blob: 249cb0aeb5ae45621524afb1fb541216ee1b9221 [file] [log] [blame]
/*
* Copyright 2017 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: Rafał Miłecki <zajec5@gmail.com>
* Alex Deucher <alexdeucher@gmail.com>
*/
#include "amdgpu.h"
#include "amdgpu_drv.h"
#include "amdgpu_pm.h"
#include "amdgpu_dpm.h"
#include "atom.h"
#include <linux/pci.h>
#include <linux/hwmon.h>
#include <linux/hwmon-sysfs.h>
#include <linux/nospec.h>
#include <linux/pm_runtime.h>
#include <asm/processor.h>
#include "hwmgr.h"
static const struct cg_flag_name clocks[] = {
{AMD_CG_SUPPORT_GFX_FGCG, "Graphics Fine Grain Clock Gating"},
{AMD_CG_SUPPORT_GFX_MGCG, "Graphics Medium Grain Clock Gating"},
{AMD_CG_SUPPORT_GFX_MGLS, "Graphics Medium Grain memory Light Sleep"},
{AMD_CG_SUPPORT_GFX_CGCG, "Graphics Coarse Grain Clock Gating"},
{AMD_CG_SUPPORT_GFX_CGLS, "Graphics Coarse Grain memory Light Sleep"},
{AMD_CG_SUPPORT_GFX_CGTS, "Graphics Coarse Grain Tree Shader Clock Gating"},
{AMD_CG_SUPPORT_GFX_CGTS_LS, "Graphics Coarse Grain Tree Shader Light Sleep"},
{AMD_CG_SUPPORT_GFX_CP_LS, "Graphics Command Processor Light Sleep"},
{AMD_CG_SUPPORT_GFX_RLC_LS, "Graphics Run List Controller Light Sleep"},
{AMD_CG_SUPPORT_GFX_3D_CGCG, "Graphics 3D Coarse Grain Clock Gating"},
{AMD_CG_SUPPORT_GFX_3D_CGLS, "Graphics 3D Coarse Grain memory Light Sleep"},
{AMD_CG_SUPPORT_MC_LS, "Memory Controller Light Sleep"},
{AMD_CG_SUPPORT_MC_MGCG, "Memory Controller Medium Grain Clock Gating"},
{AMD_CG_SUPPORT_SDMA_LS, "System Direct Memory Access Light Sleep"},
{AMD_CG_SUPPORT_SDMA_MGCG, "System Direct Memory Access Medium Grain Clock Gating"},
{AMD_CG_SUPPORT_BIF_MGCG, "Bus Interface Medium Grain Clock Gating"},
{AMD_CG_SUPPORT_BIF_LS, "Bus Interface Light Sleep"},
{AMD_CG_SUPPORT_UVD_MGCG, "Unified Video Decoder Medium Grain Clock Gating"},
{AMD_CG_SUPPORT_VCE_MGCG, "Video Compression Engine Medium Grain Clock Gating"},
{AMD_CG_SUPPORT_HDP_LS, "Host Data Path Light Sleep"},
{AMD_CG_SUPPORT_HDP_MGCG, "Host Data Path Medium Grain Clock Gating"},
{AMD_CG_SUPPORT_DRM_MGCG, "Digital Right Management Medium Grain Clock Gating"},
{AMD_CG_SUPPORT_DRM_LS, "Digital Right Management Light Sleep"},
{AMD_CG_SUPPORT_ROM_MGCG, "Rom Medium Grain Clock Gating"},
{AMD_CG_SUPPORT_DF_MGCG, "Data Fabric Medium Grain Clock Gating"},
{AMD_CG_SUPPORT_VCN_MGCG, "VCN Medium Grain Clock Gating"},
{AMD_CG_SUPPORT_HDP_DS, "Host Data Path Deep Sleep"},
{AMD_CG_SUPPORT_HDP_SD, "Host Data Path Shutdown"},
{AMD_CG_SUPPORT_IH_CG, "Interrupt Handler Clock Gating"},
{AMD_CG_SUPPORT_JPEG_MGCG, "JPEG Medium Grain Clock Gating"},
{AMD_CG_SUPPORT_ATHUB_MGCG, "Address Translation Hub Medium Grain Clock Gating"},
{AMD_CG_SUPPORT_ATHUB_LS, "Address Translation Hub Light Sleep"},
{0, NULL},
};
static const struct hwmon_temp_label {
enum PP_HWMON_TEMP channel;
const char *label;
} temp_label[] = {
{PP_TEMP_EDGE, "edge"},
{PP_TEMP_JUNCTION, "junction"},
{PP_TEMP_MEM, "mem"},
};
/**
* DOC: power_dpm_state
*
* The power_dpm_state file is a legacy interface and is only provided for
* backwards compatibility. The amdgpu driver provides a sysfs API for adjusting
* certain power related parameters. The file power_dpm_state is used for this.
* It accepts the following arguments:
*
* - battery
*
* - balanced
*
* - performance
*
* battery
*
* On older GPUs, the vbios provided a special power state for battery
* operation. Selecting battery switched to this state. This is no
* longer provided on newer GPUs so the option does nothing in that case.
*
* balanced
*
* On older GPUs, the vbios provided a special power state for balanced
* operation. Selecting balanced switched to this state. This is no
* longer provided on newer GPUs so the option does nothing in that case.
*
* performance
*
* On older GPUs, the vbios provided a special power state for performance
* operation. Selecting performance switched to this state. This is no
* longer provided on newer GPUs so the option does nothing in that case.
*
*/
static ssize_t amdgpu_get_power_dpm_state(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct drm_device *ddev = dev_get_drvdata(dev);
struct amdgpu_device *adev = drm_to_adev(ddev);
const struct amd_pm_funcs *pp_funcs = adev->powerplay.pp_funcs;
enum amd_pm_state_type pm;
int ret;
if (amdgpu_in_reset(adev))
return -EPERM;
if (adev->in_suspend && !adev->in_runpm)
return -EPERM;
ret = pm_runtime_get_sync(ddev->dev);
if (ret < 0) {
pm_runtime_put_autosuspend(ddev->dev);
return ret;
}
if (pp_funcs->get_current_power_state) {
pm = amdgpu_dpm_get_current_power_state(adev);
} else {
pm = adev->pm.dpm.user_state;
}
pm_runtime_mark_last_busy(ddev->dev);
pm_runtime_put_autosuspend(ddev->dev);
return sysfs_emit(buf, "%s\n",
(pm == POWER_STATE_TYPE_BATTERY) ? "battery" :
(pm == POWER_STATE_TYPE_BALANCED) ? "balanced" : "performance");
}
static ssize_t amdgpu_set_power_dpm_state(struct device *dev,
struct device_attribute *attr,
const char *buf,
size_t count)
{
struct drm_device *ddev = dev_get_drvdata(dev);
struct amdgpu_device *adev = drm_to_adev(ddev);
enum amd_pm_state_type state;
int ret;
if (amdgpu_in_reset(adev))
return -EPERM;
if (adev->in_suspend && !adev->in_runpm)
return -EPERM;
if (strncmp("battery", buf, strlen("battery")) == 0)
state = POWER_STATE_TYPE_BATTERY;
else if (strncmp("balanced", buf, strlen("balanced")) == 0)
state = POWER_STATE_TYPE_BALANCED;
else if (strncmp("performance", buf, strlen("performance")) == 0)
state = POWER_STATE_TYPE_PERFORMANCE;
else
return -EINVAL;
ret = pm_runtime_get_sync(ddev->dev);
if (ret < 0) {
pm_runtime_put_autosuspend(ddev->dev);
return ret;
}
if (is_support_sw_smu(adev)) {
mutex_lock(&adev->pm.mutex);
adev->pm.dpm.user_state = state;
mutex_unlock(&adev->pm.mutex);
} else if (adev->powerplay.pp_funcs->dispatch_tasks) {
amdgpu_dpm_dispatch_task(adev, AMD_PP_TASK_ENABLE_USER_STATE, &state);
} else {
mutex_lock(&adev->pm.mutex);
adev->pm.dpm.user_state = state;
mutex_unlock(&adev->pm.mutex);
amdgpu_pm_compute_clocks(adev);
}
pm_runtime_mark_last_busy(ddev->dev);
pm_runtime_put_autosuspend(ddev->dev);
return count;
}
/**
* DOC: power_dpm_force_performance_level
*
* The amdgpu driver provides a sysfs API for adjusting certain power
* related parameters. The file power_dpm_force_performance_level is
* used for this. It accepts the following arguments:
*
* - auto
*
* - low
*
* - high
*
* - manual
*
* - profile_standard
*
* - profile_min_sclk
*
* - profile_min_mclk
*
* - profile_peak
*
* auto
*
* When auto is selected, the driver will attempt to dynamically select
* the optimal power profile for current conditions in the driver.
*
* low
*
* When low is selected, the clocks are forced to the lowest power state.
*
* high
*
* When high is selected, the clocks are forced to the highest power state.
*
* manual
*
* When manual is selected, the user can manually adjust which power states
* are enabled for each clock domain via the sysfs pp_dpm_mclk, pp_dpm_sclk,
* and pp_dpm_pcie files and adjust the power state transition heuristics
* via the pp_power_profile_mode sysfs file.
*
* profile_standard
* profile_min_sclk
* profile_min_mclk
* profile_peak
*
* When the profiling modes are selected, clock and power gating are
* disabled and the clocks are set for different profiling cases. This
* mode is recommended for profiling specific work loads where you do
* not want clock or power gating for clock fluctuation to interfere
* with your results. profile_standard sets the clocks to a fixed clock
* level which varies from asic to asic. profile_min_sclk forces the sclk
* to the lowest level. profile_min_mclk forces the mclk to the lowest level.
* profile_peak sets all clocks (mclk, sclk, pcie) to the highest levels.
*
*/
static ssize_t amdgpu_get_power_dpm_force_performance_level(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct drm_device *ddev = dev_get_drvdata(dev);
struct amdgpu_device *adev = drm_to_adev(ddev);
enum amd_dpm_forced_level level = 0xff;
int ret;
if (amdgpu_in_reset(adev))
return -EPERM;
if (adev->in_suspend && !adev->in_runpm)
return -EPERM;
ret = pm_runtime_get_sync(ddev->dev);
if (ret < 0) {
pm_runtime_put_autosuspend(ddev->dev);
return ret;
}
if (adev->powerplay.pp_funcs->get_performance_level)
level = amdgpu_dpm_get_performance_level(adev);
else
level = adev->pm.dpm.forced_level;
pm_runtime_mark_last_busy(ddev->dev);
pm_runtime_put_autosuspend(ddev->dev);
return sysfs_emit(buf, "%s\n",
(level == AMD_DPM_FORCED_LEVEL_AUTO) ? "auto" :
(level == AMD_DPM_FORCED_LEVEL_LOW) ? "low" :
(level == AMD_DPM_FORCED_LEVEL_HIGH) ? "high" :
(level == AMD_DPM_FORCED_LEVEL_MANUAL) ? "manual" :
(level == AMD_DPM_FORCED_LEVEL_PROFILE_STANDARD) ? "profile_standard" :
(level == AMD_DPM_FORCED_LEVEL_PROFILE_MIN_SCLK) ? "profile_min_sclk" :
(level == AMD_DPM_FORCED_LEVEL_PROFILE_MIN_MCLK) ? "profile_min_mclk" :
(level == AMD_DPM_FORCED_LEVEL_PROFILE_PEAK) ? "profile_peak" :
(level == AMD_DPM_FORCED_LEVEL_PERF_DETERMINISM) ? "perf_determinism" :
"unknown");
}
static ssize_t amdgpu_set_power_dpm_force_performance_level(struct device *dev,
struct device_attribute *attr,
const char *buf,
size_t count)
{
struct drm_device *ddev = dev_get_drvdata(dev);
struct amdgpu_device *adev = drm_to_adev(ddev);
const struct amd_pm_funcs *pp_funcs = adev->powerplay.pp_funcs;
enum amd_dpm_forced_level level;
enum amd_dpm_forced_level current_level = 0xff;
int ret = 0;
if (amdgpu_in_reset(adev))
return -EPERM;
if (adev->in_suspend && !adev->in_runpm)
return -EPERM;
if (strncmp("low", buf, strlen("low")) == 0) {
level = AMD_DPM_FORCED_LEVEL_LOW;
} else if (strncmp("high", buf, strlen("high")) == 0) {
level = AMD_DPM_FORCED_LEVEL_HIGH;
} else if (strncmp("auto", buf, strlen("auto")) == 0) {
level = AMD_DPM_FORCED_LEVEL_AUTO;
} else if (strncmp("manual", buf, strlen("manual")) == 0) {
level = AMD_DPM_FORCED_LEVEL_MANUAL;
} else if (strncmp("profile_exit", buf, strlen("profile_exit")) == 0) {
level = AMD_DPM_FORCED_LEVEL_PROFILE_EXIT;
} else if (strncmp("profile_standard", buf, strlen("profile_standard")) == 0) {
level = AMD_DPM_FORCED_LEVEL_PROFILE_STANDARD;
} else if (strncmp("profile_min_sclk", buf, strlen("profile_min_sclk")) == 0) {
level = AMD_DPM_FORCED_LEVEL_PROFILE_MIN_SCLK;
} else if (strncmp("profile_min_mclk", buf, strlen("profile_min_mclk")) == 0) {
level = AMD_DPM_FORCED_LEVEL_PROFILE_MIN_MCLK;
} else if (strncmp("profile_peak", buf, strlen("profile_peak")) == 0) {
level = AMD_DPM_FORCED_LEVEL_PROFILE_PEAK;
} else if (strncmp("perf_determinism", buf, strlen("perf_determinism")) == 0) {
level = AMD_DPM_FORCED_LEVEL_PERF_DETERMINISM;
} else {
return -EINVAL;
}
ret = pm_runtime_get_sync(ddev->dev);
if (ret < 0) {
pm_runtime_put_autosuspend(ddev->dev);
return ret;
}
if (pp_funcs->get_performance_level)
current_level = amdgpu_dpm_get_performance_level(adev);
if (current_level == level) {
pm_runtime_mark_last_busy(ddev->dev);
pm_runtime_put_autosuspend(ddev->dev);
return count;
}
if (adev->asic_type == CHIP_RAVEN) {
if (!(adev->apu_flags & AMD_APU_IS_RAVEN2)) {
if (current_level != AMD_DPM_FORCED_LEVEL_MANUAL && level == AMD_DPM_FORCED_LEVEL_MANUAL)
amdgpu_gfx_off_ctrl(adev, false);
else if (current_level == AMD_DPM_FORCED_LEVEL_MANUAL && level != AMD_DPM_FORCED_LEVEL_MANUAL)
amdgpu_gfx_off_ctrl(adev, true);
}
}
/* profile_exit setting is valid only when current mode is in profile mode */
if (!(current_level & (AMD_DPM_FORCED_LEVEL_PROFILE_STANDARD |
AMD_DPM_FORCED_LEVEL_PROFILE_MIN_SCLK |
AMD_DPM_FORCED_LEVEL_PROFILE_MIN_MCLK |
AMD_DPM_FORCED_LEVEL_PROFILE_PEAK)) &&
(level == AMD_DPM_FORCED_LEVEL_PROFILE_EXIT)) {
pr_err("Currently not in any profile mode!\n");
pm_runtime_mark_last_busy(ddev->dev);
pm_runtime_put_autosuspend(ddev->dev);
return -EINVAL;
}
if (pp_funcs->force_performance_level) {
mutex_lock(&adev->pm.mutex);
if (adev->pm.dpm.thermal_active) {
mutex_unlock(&adev->pm.mutex);
pm_runtime_mark_last_busy(ddev->dev);
pm_runtime_put_autosuspend(ddev->dev);
return -EINVAL;
}
ret = amdgpu_dpm_force_performance_level(adev, level);
if (ret) {
mutex_unlock(&adev->pm.mutex);
pm_runtime_mark_last_busy(ddev->dev);
pm_runtime_put_autosuspend(ddev->dev);
return -EINVAL;
} else {
adev->pm.dpm.forced_level = level;
}
mutex_unlock(&adev->pm.mutex);
}
pm_runtime_mark_last_busy(ddev->dev);
pm_runtime_put_autosuspend(ddev->dev);
return count;
}
static ssize_t amdgpu_get_pp_num_states(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct drm_device *ddev = dev_get_drvdata(dev);
struct amdgpu_device *adev = drm_to_adev(ddev);
const struct amd_pm_funcs *pp_funcs = adev->powerplay.pp_funcs;
struct pp_states_info data;
uint32_t i;
int buf_len, ret;
if (amdgpu_in_reset(adev))
return -EPERM;
if (adev->in_suspend && !adev->in_runpm)
return -EPERM;
ret = pm_runtime_get_sync(ddev->dev);
if (ret < 0) {
pm_runtime_put_autosuspend(ddev->dev);
return ret;
}
if (pp_funcs->get_pp_num_states) {
amdgpu_dpm_get_pp_num_states(adev, &data);
} else {
memset(&data, 0, sizeof(data));
}
pm_runtime_mark_last_busy(ddev->dev);
pm_runtime_put_autosuspend(ddev->dev);
buf_len = sysfs_emit(buf, "states: %d\n", data.nums);
for (i = 0; i < data.nums; i++)
buf_len += sysfs_emit_at(buf, buf_len, "%d %s\n", i,
(data.states[i] == POWER_STATE_TYPE_INTERNAL_BOOT) ? "boot" :
(data.states[i] == POWER_STATE_TYPE_BATTERY) ? "battery" :
(data.states[i] == POWER_STATE_TYPE_BALANCED) ? "balanced" :
(data.states[i] == POWER_STATE_TYPE_PERFORMANCE) ? "performance" : "default");
return buf_len;
}
static ssize_t amdgpu_get_pp_cur_state(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct drm_device *ddev = dev_get_drvdata(dev);
struct amdgpu_device *adev = drm_to_adev(ddev);
const struct amd_pm_funcs *pp_funcs = adev->powerplay.pp_funcs;
struct pp_states_info data = {0};
enum amd_pm_state_type pm = 0;
int i = 0, ret = 0;
if (amdgpu_in_reset(adev))
return -EPERM;
if (adev->in_suspend && !adev->in_runpm)
return -EPERM;
ret = pm_runtime_get_sync(ddev->dev);
if (ret < 0) {
pm_runtime_put_autosuspend(ddev->dev);
return ret;
}
if (pp_funcs->get_current_power_state
&& pp_funcs->get_pp_num_states) {
pm = amdgpu_dpm_get_current_power_state(adev);
amdgpu_dpm_get_pp_num_states(adev, &data);
}
pm_runtime_mark_last_busy(ddev->dev);
pm_runtime_put_autosuspend(ddev->dev);
for (i = 0; i < data.nums; i++) {
if (pm == data.states[i])
break;
}
if (i == data.nums)
i = -EINVAL;
return sysfs_emit(buf, "%d\n", i);
}
static ssize_t amdgpu_get_pp_force_state(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct drm_device *ddev = dev_get_drvdata(dev);
struct amdgpu_device *adev = drm_to_adev(ddev);
if (amdgpu_in_reset(adev))
return -EPERM;
if (adev->in_suspend && !adev->in_runpm)
return -EPERM;
if (adev->pp_force_state_enabled)
return amdgpu_get_pp_cur_state(dev, attr, buf);
else
return sysfs_emit(buf, "\n");
}
static ssize_t amdgpu_set_pp_force_state(struct device *dev,
struct device_attribute *attr,
const char *buf,
size_t count)
{
struct drm_device *ddev = dev_get_drvdata(dev);
struct amdgpu_device *adev = drm_to_adev(ddev);
enum amd_pm_state_type state = 0;
unsigned long idx;
int ret;
if (amdgpu_in_reset(adev))
return -EPERM;
if (adev->in_suspend && !adev->in_runpm)
return -EPERM;
if (strlen(buf) == 1)
adev->pp_force_state_enabled = false;
else if (is_support_sw_smu(adev))
adev->pp_force_state_enabled = false;
else if (adev->powerplay.pp_funcs->dispatch_tasks &&
adev->powerplay.pp_funcs->get_pp_num_states) {
struct pp_states_info data;
ret = kstrtoul(buf, 0, &idx);
if (ret || idx >= ARRAY_SIZE(data.states))
return -EINVAL;
idx = array_index_nospec(idx, ARRAY_SIZE(data.states));
amdgpu_dpm_get_pp_num_states(adev, &data);
state = data.states[idx];
ret = pm_runtime_get_sync(ddev->dev);
if (ret < 0) {
pm_runtime_put_autosuspend(ddev->dev);
return ret;
}
/* only set user selected power states */
if (state != POWER_STATE_TYPE_INTERNAL_BOOT &&
state != POWER_STATE_TYPE_DEFAULT) {
amdgpu_dpm_dispatch_task(adev,
AMD_PP_TASK_ENABLE_USER_STATE, &state);
adev->pp_force_state_enabled = true;
}
pm_runtime_mark_last_busy(ddev->dev);
pm_runtime_put_autosuspend(ddev->dev);
}
return count;
}
/**
* DOC: pp_table
*
* The amdgpu driver provides a sysfs API for uploading new powerplay
* tables. The file pp_table is used for this. Reading the file
* will dump the current power play table. Writing to the file
* will attempt to upload a new powerplay table and re-initialize
* powerplay using that new table.
*
*/
static ssize_t amdgpu_get_pp_table(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct drm_device *ddev = dev_get_drvdata(dev);
struct amdgpu_device *adev = drm_to_adev(ddev);
char *table = NULL;
int size, ret;
if (amdgpu_in_reset(adev))
return -EPERM;
if (adev->in_suspend && !adev->in_runpm)
return -EPERM;
ret = pm_runtime_get_sync(ddev->dev);
if (ret < 0) {
pm_runtime_put_autosuspend(ddev->dev);
return ret;
}
if (adev->powerplay.pp_funcs->get_pp_table) {
size = amdgpu_dpm_get_pp_table(adev, &table);
pm_runtime_mark_last_busy(ddev->dev);
pm_runtime_put_autosuspend(ddev->dev);
if (size < 0)
return size;
} else {
pm_runtime_mark_last_busy(ddev->dev);
pm_runtime_put_autosuspend(ddev->dev);
return 0;
}
if (size >= PAGE_SIZE)
size = PAGE_SIZE - 1;
memcpy(buf, table, size);
return size;
}
static ssize_t amdgpu_set_pp_table(struct device *dev,
struct device_attribute *attr,
const char *buf,
size_t count)
{
struct drm_device *ddev = dev_get_drvdata(dev);
struct amdgpu_device *adev = drm_to_adev(ddev);
int ret = 0;
if (amdgpu_in_reset(adev))
return -EPERM;
if (adev->in_suspend && !adev->in_runpm)
return -EPERM;
ret = pm_runtime_get_sync(ddev->dev);
if (ret < 0) {
pm_runtime_put_autosuspend(ddev->dev);
return ret;
}
ret = amdgpu_dpm_set_pp_table(adev, buf, count);
if (ret) {
pm_runtime_mark_last_busy(ddev->dev);
pm_runtime_put_autosuspend(ddev->dev);
return ret;
}
pm_runtime_mark_last_busy(ddev->dev);
pm_runtime_put_autosuspend(ddev->dev);
return count;
}
/**
* DOC: pp_od_clk_voltage
*
* The amdgpu driver provides a sysfs API for adjusting the clocks and voltages
* in each power level within a power state. The pp_od_clk_voltage is used for
* this.
*
* Note that the actual memory controller clock rate are exposed, not
* the effective memory clock of the DRAMs. To translate it, use the
* following formula:
*
* Clock conversion (Mhz):
*
* HBM: effective_memory_clock = memory_controller_clock * 1
*
* G5: effective_memory_clock = memory_controller_clock * 1
*
* G6: effective_memory_clock = memory_controller_clock * 2
*
* DRAM data rate (MT/s):
*
* HBM: effective_memory_clock * 2 = data_rate
*
* G5: effective_memory_clock * 4 = data_rate
*
* G6: effective_memory_clock * 8 = data_rate
*
* Bandwidth (MB/s):
*
* data_rate * vram_bit_width / 8 = memory_bandwidth
*
* Some examples:
*
* G5 on RX460:
*
* memory_controller_clock = 1750 Mhz
*
* effective_memory_clock = 1750 Mhz * 1 = 1750 Mhz
*
* data rate = 1750 * 4 = 7000 MT/s
*
* memory_bandwidth = 7000 * 128 bits / 8 = 112000 MB/s
*
* G6 on RX5700:
*
* memory_controller_clock = 875 Mhz
*
* effective_memory_clock = 875 Mhz * 2 = 1750 Mhz
*
* data rate = 1750 * 8 = 14000 MT/s
*
* memory_bandwidth = 14000 * 256 bits / 8 = 448000 MB/s
*
* < For Vega10 and previous ASICs >
*
* Reading the file will display:
*
* - a list of engine clock levels and voltages labeled OD_SCLK
*
* - a list of memory clock levels and voltages labeled OD_MCLK
*
* - a list of valid ranges for sclk, mclk, and voltage labeled OD_RANGE
*
* To manually adjust these settings, first select manual using
* power_dpm_force_performance_level. Enter a new value for each
* level by writing a string that contains "s/m level clock voltage" to
* the file. E.g., "s 1 500 820" will update sclk level 1 to be 500 MHz
* at 820 mV; "m 0 350 810" will update mclk level 0 to be 350 MHz at
* 810 mV. When you have edited all of the states as needed, write
* "c" (commit) to the file to commit your changes. If you want to reset to the
* default power levels, write "r" (reset) to the file to reset them.
*
*
* < For Vega20 and newer ASICs >
*
* Reading the file will display:
*
* - minimum and maximum engine clock labeled OD_SCLK
*
* - minimum(not available for Vega20 and Navi1x) and maximum memory
* clock labeled OD_MCLK
*
* - three <frequency, voltage> points labeled OD_VDDC_CURVE.
* They can be used to calibrate the sclk voltage curve.
*
* - voltage offset(in mV) applied on target voltage calculation.
* This is available for Sienna Cichlid, Navy Flounder and Dimgrey
* Cavefish. For these ASICs, the target voltage calculation can be
* illustrated by "voltage = voltage calculated from v/f curve +
* overdrive vddgfx offset"
*
* - a list of valid ranges for sclk, mclk, and voltage curve points
* labeled OD_RANGE
*
* < For APUs >
*
* Reading the file will display:
*
* - minimum and maximum engine clock labeled OD_SCLK
*
* - a list of valid ranges for sclk labeled OD_RANGE
*
* < For VanGogh >
*
* Reading the file will display:
*
* - minimum and maximum engine clock labeled OD_SCLK
* - minimum and maximum core clocks labeled OD_CCLK
*
* - a list of valid ranges for sclk and cclk labeled OD_RANGE
*
* To manually adjust these settings:
*
* - First select manual using power_dpm_force_performance_level
*
* - For clock frequency setting, enter a new value by writing a
* string that contains "s/m index clock" to the file. The index
* should be 0 if to set minimum clock. And 1 if to set maximum
* clock. E.g., "s 0 500" will update minimum sclk to be 500 MHz.
* "m 1 800" will update maximum mclk to be 800Mhz. For core
* clocks on VanGogh, the string contains "p core index clock".
* E.g., "p 2 0 800" would set the minimum core clock on core
* 2 to 800Mhz.
*
* For sclk voltage curve, enter the new values by writing a
* string that contains "vc point clock voltage" to the file. The
* points are indexed by 0, 1 and 2. E.g., "vc 0 300 600" will
* update point1 with clock set as 300Mhz and voltage as
* 600mV. "vc 2 1000 1000" will update point3 with clock set
* as 1000Mhz and voltage 1000mV.
*
* To update the voltage offset applied for gfxclk/voltage calculation,
* enter the new value by writing a string that contains "vo offset".
* This is supported by Sienna Cichlid, Navy Flounder and Dimgrey Cavefish.
* And the offset can be a positive or negative value.
*
* - When you have edited all of the states as needed, write "c" (commit)
* to the file to commit your changes
*
* - If you want to reset to the default power levels, write "r" (reset)
* to the file to reset them
*
*/
static ssize_t amdgpu_set_pp_od_clk_voltage(struct device *dev,
struct device_attribute *attr,
const char *buf,
size_t count)
{
struct drm_device *ddev = dev_get_drvdata(dev);
struct amdgpu_device *adev = drm_to_adev(ddev);
int ret;
uint32_t parameter_size = 0;
long parameter[64];
char buf_cpy[128];
char *tmp_str;
char *sub_str;
const char delimiter[3] = {' ', '\n', '\0'};
uint32_t type;
if (amdgpu_in_reset(adev))
return -EPERM;
if (adev->in_suspend && !adev->in_runpm)
return -EPERM;
if (count > 127)
return -EINVAL;
if (*buf == 's')
type = PP_OD_EDIT_SCLK_VDDC_TABLE;
else if (*buf == 'p')
type = PP_OD_EDIT_CCLK_VDDC_TABLE;
else if (*buf == 'm')
type = PP_OD_EDIT_MCLK_VDDC_TABLE;
else if(*buf == 'r')
type = PP_OD_RESTORE_DEFAULT_TABLE;
else if (*buf == 'c')
type = PP_OD_COMMIT_DPM_TABLE;
else if (!strncmp(buf, "vc", 2))
type = PP_OD_EDIT_VDDC_CURVE;
else if (!strncmp(buf, "vo", 2))
type = PP_OD_EDIT_VDDGFX_OFFSET;
else
return -EINVAL;
memcpy(buf_cpy, buf, count+1);
tmp_str = buf_cpy;
if ((type == PP_OD_EDIT_VDDC_CURVE) ||
(type == PP_OD_EDIT_VDDGFX_OFFSET))
tmp_str++;
while (isspace(*++tmp_str));
while ((sub_str = strsep(&tmp_str, delimiter)) != NULL) {
if (strlen(sub_str) == 0)
continue;
ret = kstrtol(sub_str, 0, &parameter[parameter_size]);
if (ret)
return -EINVAL;
parameter_size++;
while (isspace(*tmp_str))
tmp_str++;
}
ret = pm_runtime_get_sync(ddev->dev);
if (ret < 0) {
pm_runtime_put_autosuspend(ddev->dev);
return ret;
}
if (adev->powerplay.pp_funcs->set_fine_grain_clk_vol) {
ret = amdgpu_dpm_set_fine_grain_clk_vol(adev, type,
parameter,
parameter_size);
if (ret) {
pm_runtime_mark_last_busy(ddev->dev);
pm_runtime_put_autosuspend(ddev->dev);
return -EINVAL;
}
}
if (adev->powerplay.pp_funcs->odn_edit_dpm_table) {
ret = amdgpu_dpm_odn_edit_dpm_table(adev, type,
parameter, parameter_size);
if (ret) {
pm_runtime_mark_last_busy(ddev->dev);
pm_runtime_put_autosuspend(ddev->dev);
return -EINVAL;
}
}
if (type == PP_OD_COMMIT_DPM_TABLE) {
if (adev->powerplay.pp_funcs->dispatch_tasks) {
amdgpu_dpm_dispatch_task(adev,
AMD_PP_TASK_READJUST_POWER_STATE,
NULL);
pm_runtime_mark_last_busy(ddev->dev);
pm_runtime_put_autosuspend(ddev->dev);
return count;
} else {
pm_runtime_mark_last_busy(ddev->dev);
pm_runtime_put_autosuspend(ddev->dev);
return -EINVAL;
}
}
pm_runtime_mark_last_busy(ddev->dev);
pm_runtime_put_autosuspend(ddev->dev);
return count;
}
static ssize_t amdgpu_get_pp_od_clk_voltage(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct drm_device *ddev = dev_get_drvdata(dev);
struct amdgpu_device *adev = drm_to_adev(ddev);
ssize_t size;
int ret;
if (amdgpu_in_reset(adev))
return -EPERM;
if (adev->in_suspend && !adev->in_runpm)
return -EPERM;
ret = pm_runtime_get_sync(ddev->dev);
if (ret < 0) {
pm_runtime_put_autosuspend(ddev->dev);
return ret;
}
if (adev->powerplay.pp_funcs->print_clock_levels) {
size = amdgpu_dpm_print_clock_levels(adev, OD_SCLK, buf);
size += amdgpu_dpm_print_clock_levels(adev, OD_MCLK, buf+size);
size += amdgpu_dpm_print_clock_levels(adev, OD_VDDC_CURVE, buf+size);
size += amdgpu_dpm_print_clock_levels(adev, OD_VDDGFX_OFFSET, buf+size);
size += amdgpu_dpm_print_clock_levels(adev, OD_RANGE, buf+size);
size += amdgpu_dpm_print_clock_levels(adev, OD_CCLK, buf+size);
} else {
size = sysfs_emit(buf, "\n");
}
pm_runtime_mark_last_busy(ddev->dev);
pm_runtime_put_autosuspend(ddev->dev);
return size;
}
/**
* DOC: pp_features
*
* The amdgpu driver provides a sysfs API for adjusting what powerplay
* features to be enabled. The file pp_features is used for this. And
* this is only available for Vega10 and later dGPUs.
*
* Reading back the file will show you the followings:
* - Current ppfeature masks
* - List of the all supported powerplay features with their naming,
* bitmasks and enablement status('Y'/'N' means "enabled"/"disabled").
*
* To manually enable or disable a specific feature, just set or clear
* the corresponding bit from original ppfeature masks and input the
* new ppfeature masks.
*/
static ssize_t amdgpu_set_pp_features(struct device *dev,
struct device_attribute *attr,
const char *buf,
size_t count)
{
struct drm_device *ddev = dev_get_drvdata(dev);
struct amdgpu_device *adev = drm_to_adev(ddev);
uint64_t featuremask;
int ret;
if (amdgpu_in_reset(adev))
return -EPERM;
if (adev->in_suspend && !adev->in_runpm)
return -EPERM;
ret = kstrtou64(buf, 0, &featuremask);
if (ret)
return -EINVAL;
ret = pm_runtime_get_sync(ddev->dev);
if (ret < 0) {
pm_runtime_put_autosuspend(ddev->dev);
return ret;
}
if (adev->powerplay.pp_funcs->set_ppfeature_status) {
ret = amdgpu_dpm_set_ppfeature_status(adev, featuremask);
if (ret) {
pm_runtime_mark_last_busy(ddev->dev);
pm_runtime_put_autosuspend(ddev->dev);
return -EINVAL;
}
}
pm_runtime_mark_last_busy(ddev->dev);
pm_runtime_put_autosuspend(ddev->dev);
return count;
}
static ssize_t amdgpu_get_pp_features(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct drm_device *ddev = dev_get_drvdata(dev);
struct amdgpu_device *adev = drm_to_adev(ddev);
ssize_t size;
int ret;
if (amdgpu_in_reset(adev))
return -EPERM;
if (adev->in_suspend && !adev->in_runpm)
return -EPERM;
ret = pm_runtime_get_sync(ddev->dev);
if (ret < 0) {
pm_runtime_put_autosuspend(ddev->dev);
return ret;
}
if (adev->powerplay.pp_funcs->get_ppfeature_status)
size = amdgpu_dpm_get_ppfeature_status(adev, buf);
else
size = sysfs_emit(buf, "\n");
pm_runtime_mark_last_busy(ddev->dev);
pm_runtime_put_autosuspend(ddev->dev);
return size;
}
/**
* DOC: pp_dpm_sclk pp_dpm_mclk pp_dpm_socclk pp_dpm_fclk pp_dpm_dcefclk pp_dpm_pcie
*
* The amdgpu driver provides a sysfs API for adjusting what power levels
* are enabled for a given power state. The files pp_dpm_sclk, pp_dpm_mclk,
* pp_dpm_socclk, pp_dpm_fclk, pp_dpm_dcefclk and pp_dpm_pcie are used for
* this.
*
* pp_dpm_socclk and pp_dpm_dcefclk interfaces are only available for
* Vega10 and later ASICs.
* pp_dpm_fclk interface is only available for Vega20 and later ASICs.
*
* Reading back the files will show you the available power levels within
* the power state and the clock information for those levels.
*
* To manually adjust these states, first select manual using
* power_dpm_force_performance_level.
* Secondly, enter a new value for each level by inputing a string that
* contains " echo xx xx xx > pp_dpm_sclk/mclk/pcie"
* E.g.,
*
* .. code-block:: bash
*
* echo "4 5 6" > pp_dpm_sclk
*
* will enable sclk levels 4, 5, and 6.
*
* NOTE: change to the dcefclk max dpm level is not supported now
*/
static ssize_t amdgpu_get_pp_dpm_clock(struct device *dev,
enum pp_clock_type type,
char *buf)
{
struct drm_device *ddev = dev_get_drvdata(dev);
struct amdgpu_device *adev = drm_to_adev(ddev);
ssize_t size;
int ret;
if (amdgpu_in_reset(adev))
return -EPERM;
if (adev->in_suspend && !adev->in_runpm)
return -EPERM;
ret = pm_runtime_get_sync(ddev->dev);
if (ret < 0) {
pm_runtime_put_autosuspend(ddev->dev);
return ret;
}
if (adev->powerplay.pp_funcs->print_clock_levels)
size = amdgpu_dpm_print_clock_levels(adev, type, buf);
else
size = sysfs_emit(buf, "\n");
pm_runtime_mark_last_busy(ddev->dev);
pm_runtime_put_autosuspend(ddev->dev);
return size;
}
/*
* Worst case: 32 bits individually specified, in octal at 12 characters
* per line (+1 for \n).
*/
#define AMDGPU_MASK_BUF_MAX (32 * 13)
static ssize_t amdgpu_read_mask(const char *buf, size_t count, uint32_t *mask)
{
int ret;
unsigned long level;
char *sub_str = NULL;
char *tmp;
char buf_cpy[AMDGPU_MASK_BUF_MAX + 1];
const char delimiter[3] = {' ', '\n', '\0'};
size_t bytes;
*mask = 0;
bytes = min(count, sizeof(buf_cpy) - 1);
memcpy(buf_cpy, buf, bytes);
buf_cpy[bytes] = '\0';
tmp = buf_cpy;
while ((sub_str = strsep(&tmp, delimiter)) != NULL) {
if (strlen(sub_str)) {
ret = kstrtoul(sub_str, 0, &level);
if (ret || level > 31)
return -EINVAL;
*mask |= 1 << level;
} else
break;
}
return 0;
}
static ssize_t amdgpu_set_pp_dpm_clock(struct device *dev,
enum pp_clock_type type,
const char *buf,
size_t count)
{
struct drm_device *ddev = dev_get_drvdata(dev);
struct amdgpu_device *adev = drm_to_adev(ddev);
int ret;
uint32_t mask = 0;
if (amdgpu_in_reset(adev))
return -EPERM;
if (adev->in_suspend && !adev->in_runpm)
return -EPERM;
ret = amdgpu_read_mask(buf, count, &mask);
if (ret)
return ret;
ret = pm_runtime_get_sync(ddev->dev);
if (ret < 0) {
pm_runtime_put_autosuspend(ddev->dev);
return ret;
}
if (adev->powerplay.pp_funcs->force_clock_level)
ret = amdgpu_dpm_force_clock_level(adev, type, mask);
else
ret = 0;
pm_runtime_mark_last_busy(ddev->dev);
pm_runtime_put_autosuspend(ddev->dev);
if (ret)
return -EINVAL;
return count;
}
static ssize_t amdgpu_get_pp_dpm_sclk(struct device *dev,
struct device_attribute *attr,
char *buf)
{
return amdgpu_get_pp_dpm_clock(dev, PP_SCLK, buf);
}
static ssize_t amdgpu_set_pp_dpm_sclk(struct device *dev,
struct device_attribute *attr,
const char *buf,
size_t count)
{
return amdgpu_set_pp_dpm_clock(dev, PP_SCLK, buf, count);
}
static ssize_t amdgpu_get_pp_dpm_mclk(struct device *dev,
struct device_attribute *attr,
char *buf)
{
return amdgpu_get_pp_dpm_clock(dev, PP_MCLK, buf);
}
static ssize_t amdgpu_set_pp_dpm_mclk(struct device *dev,
struct device_attribute *attr,
const char *buf,
size_t count)
{
return amdgpu_set_pp_dpm_clock(dev, PP_MCLK, buf, count);
}
static ssize_t amdgpu_get_pp_dpm_socclk(struct device *dev,
struct device_attribute *attr,
char *buf)
{
return amdgpu_get_pp_dpm_clock(dev, PP_SOCCLK, buf);
}
static ssize_t amdgpu_set_pp_dpm_socclk(struct device *dev,
struct device_attribute *attr,
const char *buf,
size_t count)
{
return amdgpu_set_pp_dpm_clock(dev, PP_SOCCLK, buf, count);
}
static ssize_t amdgpu_get_pp_dpm_fclk(struct device *dev,
struct device_attribute *attr,
char *buf)
{
return amdgpu_get_pp_dpm_clock(dev, PP_FCLK, buf);
}
static ssize_t amdgpu_set_pp_dpm_fclk(struct device *dev,
struct device_attribute *attr,
const char *buf,
size_t count)
{
return amdgpu_set_pp_dpm_clock(dev, PP_FCLK, buf, count);
}
static ssize_t amdgpu_get_pp_dpm_vclk(struct device *dev,
struct device_attribute *attr,
char *buf)
{
return amdgpu_get_pp_dpm_clock(dev, PP_VCLK, buf);
}
static ssize_t amdgpu_set_pp_dpm_vclk(struct device *dev,
struct device_attribute *attr,
const char *buf,
size_t count)
{
return amdgpu_set_pp_dpm_clock(dev, PP_VCLK, buf, count);
}
static ssize_t amdgpu_get_pp_dpm_dclk(struct device *dev,
struct device_attribute *attr,
char *buf)
{
return amdgpu_get_pp_dpm_clock(dev, PP_DCLK, buf);
}
static ssize_t amdgpu_set_pp_dpm_dclk(struct device *dev,
struct device_attribute *attr,
const char *buf,
size_t count)
{
return amdgpu_set_pp_dpm_clock(dev, PP_DCLK, buf, count);
}
static ssize_t amdgpu_get_pp_dpm_dcefclk(struct device *dev,
struct device_attribute *attr,
char *buf)
{
return amdgpu_get_pp_dpm_clock(dev, PP_DCEFCLK, buf);
}
static ssize_t amdgpu_set_pp_dpm_dcefclk(struct device *dev,
struct device_attribute *attr,
const char *buf,
size_t count)
{
return amdgpu_set_pp_dpm_clock(dev, PP_DCEFCLK, buf, count);
}
static ssize_t amdgpu_get_pp_dpm_pcie(struct device *dev,
struct device_attribute *attr,
char *buf)
{
return amdgpu_get_pp_dpm_clock(dev, PP_PCIE, buf);
}
static ssize_t amdgpu_set_pp_dpm_pcie(struct device *dev,
struct device_attribute *attr,
const char *buf,
size_t count)
{
return amdgpu_set_pp_dpm_clock(dev, PP_PCIE, buf, count);
}
static ssize_t amdgpu_get_pp_sclk_od(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct drm_device *ddev = dev_get_drvdata(dev);
struct amdgpu_device *adev = drm_to_adev(ddev);
uint32_t value = 0;
int ret;
if (amdgpu_in_reset(adev))
return -EPERM;
if (adev->in_suspend && !adev->in_runpm)
return -EPERM;
ret = pm_runtime_get_sync(ddev->dev);
if (ret < 0) {
pm_runtime_put_autosuspend(ddev->dev);
return ret;
}
if (is_support_sw_smu(adev))
value = 0;
else if (adev->powerplay.pp_funcs->get_sclk_od)
value = amdgpu_dpm_get_sclk_od(adev);
pm_runtime_mark_last_busy(ddev->dev);
pm_runtime_put_autosuspend(ddev->dev);
return sysfs_emit(buf, "%d\n", value);
}
static ssize_t amdgpu_set_pp_sclk_od(struct device *dev,
struct device_attribute *attr,
const char *buf,
size_t count)
{
struct drm_device *ddev = dev_get_drvdata(dev);
struct amdgpu_device *adev = drm_to_adev(ddev);
int ret;
long int value;
if (amdgpu_in_reset(adev))
return -EPERM;
if (adev->in_suspend && !adev->in_runpm)
return -EPERM;
ret = kstrtol(buf, 0, &value);
if (ret)
return -EINVAL;
ret = pm_runtime_get_sync(ddev->dev);
if (ret < 0) {
pm_runtime_put_autosuspend(ddev->dev);
return ret;
}
if (is_support_sw_smu(adev)) {
value = 0;
} else {
if (adev->powerplay.pp_funcs->set_sclk_od)
amdgpu_dpm_set_sclk_od(adev, (uint32_t)value);
if (adev->powerplay.pp_funcs->dispatch_tasks) {
amdgpu_dpm_dispatch_task(adev, AMD_PP_TASK_READJUST_POWER_STATE, NULL);
} else {
adev->pm.dpm.current_ps = adev->pm.dpm.boot_ps;
amdgpu_pm_compute_clocks(adev);
}
}
pm_runtime_mark_last_busy(ddev->dev);
pm_runtime_put_autosuspend(ddev->dev);
return count;
}
static ssize_t amdgpu_get_pp_mclk_od(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct drm_device *ddev = dev_get_drvdata(dev);
struct amdgpu_device *adev = drm_to_adev(ddev);
uint32_t value = 0;
int ret;
if (amdgpu_in_reset(adev))
return -EPERM;
if (adev->in_suspend && !adev->in_runpm)
return -EPERM;
ret = pm_runtime_get_sync(ddev->dev);
if (ret < 0) {
pm_runtime_put_autosuspend(ddev->dev);
return ret;
}
if (is_support_sw_smu(adev))
value = 0;
else if (adev->powerplay.pp_funcs->get_mclk_od)
value = amdgpu_dpm_get_mclk_od(adev);
pm_runtime_mark_last_busy(ddev->dev);
pm_runtime_put_autosuspend(ddev->dev);
return sysfs_emit(buf, "%d\n", value);
}
static ssize_t amdgpu_set_pp_mclk_od(struct device *dev,
struct device_attribute *attr,
const char *buf,
size_t count)
{
struct drm_device *ddev = dev_get_drvdata(dev);
struct amdgpu_device *adev = drm_to_adev(ddev);
int ret;
long int value;
if (amdgpu_in_reset(adev))
return -EPERM;
if (adev->in_suspend && !adev->in_runpm)
return -EPERM;
ret = kstrtol(buf, 0, &value);
if (ret)
return -EINVAL;
ret = pm_runtime_get_sync(ddev->dev);
if (ret < 0) {
pm_runtime_put_autosuspend(ddev->dev);
return ret;
}
if (is_support_sw_smu(adev)) {
value = 0;
} else {
if (adev->powerplay.pp_funcs->set_mclk_od)
amdgpu_dpm_set_mclk_od(adev, (uint32_t)value);
if (adev->powerplay.pp_funcs->dispatch_tasks) {
amdgpu_dpm_dispatch_task(adev, AMD_PP_TASK_READJUST_POWER_STATE, NULL);
} else {
adev->pm.dpm.current_ps = adev->pm.dpm.boot_ps;
amdgpu_pm_compute_clocks(adev);
}
}
pm_runtime_mark_last_busy(ddev->dev);
pm_runtime_put_autosuspend(ddev->dev);
return count;
}
/**
* DOC: pp_power_profile_mode
*
* The amdgpu driver provides a sysfs API for adjusting the heuristics
* related to switching between power levels in a power state. The file
* pp_power_profile_mode is used for this.
*
* Reading this file outputs a list of all of the predefined power profiles
* and the relevant heuristics settings for that profile.
*
* To select a profile or create a custom profile, first select manual using
* power_dpm_force_performance_level. Writing the number of a predefined
* profile to pp_power_profile_mode will enable those heuristics. To
* create a custom set of heuristics, write a string of numbers to the file
* starting with the number of the custom profile along with a setting
* for each heuristic parameter. Due to differences across asic families
* the heuristic parameters vary from family to family.
*
*/
static ssize_t amdgpu_get_pp_power_profile_mode(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct drm_device *ddev = dev_get_drvdata(dev);
struct amdgpu_device *adev = drm_to_adev(ddev);
ssize_t size;
int ret;
if (amdgpu_in_reset(adev))
return -EPERM;
if (adev->in_suspend && !adev->in_runpm)
return -EPERM;
ret = pm_runtime_get_sync(ddev->dev);
if (ret < 0) {
pm_runtime_put_autosuspend(ddev->dev);
return ret;
}
if (adev->powerplay.pp_funcs->get_power_profile_mode)
size = amdgpu_dpm_get_power_profile_mode(adev, buf);
else
size = sysfs_emit(buf, "\n");
pm_runtime_mark_last_busy(ddev->dev);
pm_runtime_put_autosuspend(ddev->dev);
return size;
}
static ssize_t amdgpu_set_pp_power_profile_mode(struct device *dev,
struct device_attribute *attr,
const char *buf,
size_t count)
{
int ret;
struct drm_device *ddev = dev_get_drvdata(dev);
struct amdgpu_device *adev = drm_to_adev(ddev);
uint32_t parameter_size = 0;
long parameter[64];
char *sub_str, buf_cpy[128];
char *tmp_str;
uint32_t i = 0;
char tmp[2];
long int profile_mode = 0;
const char delimiter[3] = {' ', '\n', '\0'};
if (amdgpu_in_reset(adev))
return -EPERM;
if (adev->in_suspend && !adev->in_runpm)
return -EPERM;
tmp[0] = *(buf);
tmp[1] = '\0';
ret = kstrtol(tmp, 0, &profile_mode);
if (ret)
return -EINVAL;
if (profile_mode == PP_SMC_POWER_PROFILE_CUSTOM) {
if (count < 2 || count > 127)
return -EINVAL;
while (isspace(*++buf))
i++;
memcpy(buf_cpy, buf, count-i);
tmp_str = buf_cpy;
while ((sub_str = strsep(&tmp_str, delimiter)) != NULL) {
if (strlen(sub_str) == 0)
continue;
ret = kstrtol(sub_str, 0, &parameter[parameter_size]);
if (ret)
return -EINVAL;
parameter_size++;
while (isspace(*tmp_str))
tmp_str++;
}
}
parameter[parameter_size] = profile_mode;
ret = pm_runtime_get_sync(ddev->dev);
if (ret < 0) {
pm_runtime_put_autosuspend(ddev->dev);
return ret;
}
if (adev->powerplay.pp_funcs->set_power_profile_mode)
ret = amdgpu_dpm_set_power_profile_mode(adev, parameter, parameter_size);
pm_runtime_mark_last_busy(ddev->dev);
pm_runtime_put_autosuspend(ddev->dev);
if (!ret)
return count;
return -EINVAL;
}
/**
* DOC: gpu_busy_percent
*
* The amdgpu driver provides a sysfs API for reading how busy the GPU
* is as a percentage. The file gpu_busy_percent is used for this.
* The SMU firmware computes a percentage of load based on the
* aggregate activity level in the IP cores.
*/
static ssize_t amdgpu_get_gpu_busy_percent(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct drm_device *ddev = dev_get_drvdata(dev);
struct amdgpu_device *adev = drm_to_adev(ddev);
int r, value, size = sizeof(value);
if (amdgpu_in_reset(adev))
return -EPERM;
if (adev->in_suspend && !adev->in_runpm)
return -EPERM;
r = pm_runtime_get_sync(ddev->dev);
if (r < 0) {
pm_runtime_put_autosuspend(ddev->dev);
return r;
}
/* read the IP busy sensor */
r = amdgpu_dpm_read_sensor(adev, AMDGPU_PP_SENSOR_GPU_LOAD,
(void *)&value, &size);
pm_runtime_mark_last_busy(ddev->dev);
pm_runtime_put_autosuspend(ddev->dev);
if (r)
return r;
return sysfs_emit(buf, "%d\n", value);
}
/**
* DOC: mem_busy_percent
*
* The amdgpu driver provides a sysfs API for reading how busy the VRAM
* is as a percentage. The file mem_busy_percent is used for this.
* The SMU firmware computes a percentage of load based on the
* aggregate activity level in the IP cores.
*/
static ssize_t amdgpu_get_mem_busy_percent(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct drm_device *ddev = dev_get_drvdata(dev);
struct amdgpu_device *adev = drm_to_adev(ddev);
int r, value, size = sizeof(value);
if (amdgpu_in_reset(adev))
return -EPERM;
if (adev->in_suspend && !adev->in_runpm)
return -EPERM;
r = pm_runtime_get_sync(ddev->dev);
if (r < 0) {
pm_runtime_put_autosuspend(ddev->dev);
return r;
}
/* read the IP busy sensor */
r = amdgpu_dpm_read_sensor(adev, AMDGPU_PP_SENSOR_MEM_LOAD,
(void *)&value, &size);
pm_runtime_mark_last_busy(ddev->dev);
pm_runtime_put_autosuspend(ddev->dev);
if (r)
return r;
return sysfs_emit(buf, "%d\n", value);
}
/**
* DOC: pcie_bw
*
* The amdgpu driver provides a sysfs API for estimating how much data
* has been received and sent by the GPU in the last second through PCIe.
* The file pcie_bw is used for this.
* The Perf counters count the number of received and sent messages and return
* those values, as well as the maximum payload size of a PCIe packet (mps).
* Note that it is not possible to easily and quickly obtain the size of each
* packet transmitted, so we output the max payload size (mps) to allow for
* quick estimation of the PCIe bandwidth usage
*/
static ssize_t amdgpu_get_pcie_bw(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct drm_device *ddev = dev_get_drvdata(dev);
struct amdgpu_device *adev = drm_to_adev(ddev);
uint64_t count0 = 0, count1 = 0;
int ret;
if (amdgpu_in_reset(adev))
return -EPERM;
if (adev->in_suspend && !adev->in_runpm)
return -EPERM;
if (adev->flags & AMD_IS_APU)
return -ENODATA;
if (!adev->asic_funcs->get_pcie_usage)
return -ENODATA;
ret = pm_runtime_get_sync(ddev->dev);
if (ret < 0) {
pm_runtime_put_autosuspend(ddev->dev);
return ret;
}
amdgpu_asic_get_pcie_usage(adev, &count0, &count1);
pm_runtime_mark_last_busy(ddev->dev);
pm_runtime_put_autosuspend(ddev->dev);
return sysfs_emit(buf, "%llu %llu %i\n",
count0, count1, pcie_get_mps(adev->pdev));
}
/**
* DOC: unique_id
*
* The amdgpu driver provides a sysfs API for providing a unique ID for the GPU
* The file unique_id is used for this.
* This will provide a Unique ID that will persist from machine to machine
*
* NOTE: This will only work for GFX9 and newer. This file will be absent
* on unsupported ASICs (GFX8 and older)
*/
static ssize_t amdgpu_get_unique_id(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct drm_device *ddev = dev_get_drvdata(dev);
struct amdgpu_device *adev = drm_to_adev(ddev);
if (amdgpu_in_reset(adev))
return -EPERM;
if (adev->in_suspend && !adev->in_runpm)
return -EPERM;
if (adev->unique_id)
return sysfs_emit(buf, "%016llx\n", adev->unique_id);
return 0;
}
/**
* DOC: thermal_throttling_logging
*
* Thermal throttling pulls down the clock frequency and thus the performance.
* It's an useful mechanism to protect the chip from overheating. Since it
* impacts performance, the user controls whether it is enabled and if so,
* the log frequency.
*
* Reading back the file shows you the status(enabled or disabled) and
* the interval(in seconds) between each thermal logging.
*
* Writing an integer to the file, sets a new logging interval, in seconds.
* The value should be between 1 and 3600. If the value is less than 1,
* thermal logging is disabled. Values greater than 3600 are ignored.
*/
static ssize_t amdgpu_get_thermal_throttling_logging(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct drm_device *ddev = dev_get_drvdata(dev);
struct amdgpu_device *adev = drm_to_adev(ddev);
return sysfs_emit(buf, "%s: thermal throttling logging %s, with interval %d seconds\n",
adev_to_drm(adev)->unique,
atomic_read(&adev->throttling_logging_enabled) ? "enabled" : "disabled",
adev->throttling_logging_rs.interval / HZ + 1);
}
static ssize_t amdgpu_set_thermal_throttling_logging(struct device *dev,
struct device_attribute *attr,
const char *buf,
size_t count)
{
struct drm_device *ddev = dev_get_drvdata(dev);
struct amdgpu_device *adev = drm_to_adev(ddev);
long throttling_logging_interval;
unsigned long flags;
int ret = 0;
ret = kstrtol(buf, 0, &throttling_logging_interval);
if (ret)
return ret;
if (throttling_logging_interval > 3600)
return -EINVAL;
if (throttling_logging_interval > 0) {
raw_spin_lock_irqsave(&adev->throttling_logging_rs.lock, flags);
/*
* Reset the ratelimit timer internals.
* This can effectively restart the timer.
*/
adev->throttling_logging_rs.interval =
(throttling_logging_interval - 1) * HZ;
adev->throttling_logging_rs.begin = 0;
adev->throttling_logging_rs.printed = 0;
adev->throttling_logging_rs.missed = 0;
raw_spin_unlock_irqrestore(&adev->throttling_logging_rs.lock, flags);
atomic_set(&adev->throttling_logging_enabled, 1);
} else {
atomic_set(&adev->throttling_logging_enabled, 0);
}
return count;
}
/**
* DOC: gpu_metrics
*
* The amdgpu driver provides a sysfs API for retrieving current gpu
* metrics data. The file gpu_metrics is used for this. Reading the
* file will dump all the current gpu metrics data.
*
* These data include temperature, frequency, engines utilization,
* power consume, throttler status, fan speed and cpu core statistics(
* available for APU only). That's it will give a snapshot of all sensors
* at the same time.
*/
static ssize_t amdgpu_get_gpu_metrics(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct drm_device *ddev = dev_get_drvdata(dev);
struct amdgpu_device *adev = drm_to_adev(ddev);
void *gpu_metrics;
ssize_t size = 0;
int ret;
if (amdgpu_in_reset(adev))
return -EPERM;
if (adev->in_suspend && !adev->in_runpm)
return -EPERM;
ret = pm_runtime_get_sync(ddev->dev);
if (ret < 0) {
pm_runtime_put_autosuspend(ddev->dev);
return ret;
}
if (adev->powerplay.pp_funcs->get_gpu_metrics)
size = amdgpu_dpm_get_gpu_metrics(adev, &gpu_metrics);
if (size <= 0)
goto out;
if (size >= PAGE_SIZE)
size = PAGE_SIZE - 1;
memcpy(buf, gpu_metrics, size);
out:
pm_runtime_mark_last_busy(ddev->dev);
pm_runtime_put_autosuspend(ddev->dev);
return size;
}
/**
* DOC: smartshift_apu_power
*
* The amdgpu driver provides a sysfs API for reporting APU power
* share if it supports smartshift. The value is expressed as
* the proportion of stapm limit where stapm limit is the total APU
* power limit. The result is in percentage. If APU power is 130% of
* STAPM, then APU is using 30% of the dGPU's headroom.
*/
static ssize_t amdgpu_get_smartshift_apu_power(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct drm_device *ddev = dev_get_drvdata(dev);
struct amdgpu_device *adev = drm_to_adev(ddev);
uint32_t ss_power, size;
int r = 0;
if (amdgpu_in_reset(adev))
return -EPERM;
if (adev->in_suspend && !adev->in_runpm)
return -EPERM;
r = pm_runtime_get_sync(ddev->dev);
if (r < 0) {
pm_runtime_put_autosuspend(ddev->dev);
return r;
}
r = amdgpu_dpm_read_sensor(adev, AMDGPU_PP_SENSOR_SS_APU_SHARE,
(void *)&ss_power, &size);
if (r)
goto out;
r = sysfs_emit(buf, "%u%%\n", ss_power);
out:
pm_runtime_mark_last_busy(ddev->dev);
pm_runtime_put_autosuspend(ddev->dev);
return r;
}
/**
* DOC: smartshift_dgpu_power
*
* The amdgpu driver provides a sysfs API for reporting the dGPU power
* share if the device is in HG and supports smartshift. The value
* is expressed as the proportion of stapm limit where stapm limit
* is the total APU power limit. The value is in percentage. If dGPU
* power is 20% higher than STAPM power(120%), it's using 20% of the
* APU's power headroom.
*/
static ssize_t amdgpu_get_smartshift_dgpu_power(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct drm_device *ddev = dev_get_drvdata(dev);
struct amdgpu_device *adev = drm_to_adev(ddev);
uint32_t ss_power, size;
int r = 0;
if (amdgpu_in_reset(adev))
return -EPERM;
if (adev->in_suspend && !adev->in_runpm)
return -EPERM;
r = pm_runtime_get_sync(ddev->dev);
if (r < 0) {
pm_runtime_put_autosuspend(ddev->dev);
return r;
}
r = amdgpu_dpm_read_sensor(adev, AMDGPU_PP_SENSOR_SS_DGPU_SHARE,
(void *)&ss_power, &size);
if (r)
goto out;
r = sysfs_emit(buf, "%u%%\n", ss_power);
out:
pm_runtime_mark_last_busy(ddev->dev);
pm_runtime_put_autosuspend(ddev->dev);
return r;
}
/**
* DOC: smartshift_bias
*
* The amdgpu driver provides a sysfs API for reporting the
* smartshift(SS2.0) bias level. The value ranges from -100 to 100
* and the default is 0. -100 sets maximum preference to APU
* and 100 sets max perference to dGPU.
*/
static ssize_t amdgpu_get_smartshift_bias(struct device *dev,
struct device_attribute *attr,
char *buf)
{
int r = 0;
r = sysfs_emit(buf, "%d\n", amdgpu_smartshift_bias);
return r;
}
static ssize_t amdgpu_set_smartshift_bias(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct drm_device *ddev = dev_get_drvdata(dev);
struct amdgpu_device *adev = drm_to_adev(ddev);
int r = 0;
int bias = 0;
if (amdgpu_in_reset(adev))
return -EPERM;
if (adev->in_suspend && !adev->in_runpm)
return -EPERM;
r = pm_runtime_get_sync(ddev->dev);
if (r < 0) {
pm_runtime_put_autosuspend(ddev->dev);
return r;
}
r = kstrtoint(buf, 10, &bias);
if (r)
goto out;
if (bias > AMDGPU_SMARTSHIFT_MAX_BIAS)
bias = AMDGPU_SMARTSHIFT_MAX_BIAS;
else if (bias < AMDGPU_SMARTSHIFT_MIN_BIAS)
bias = AMDGPU_SMARTSHIFT_MIN_BIAS;
amdgpu_smartshift_bias = bias;
r = count;
/* TODO: upadte bias level with SMU message */
out:
pm_runtime_mark_last_busy(ddev->dev);
pm_runtime_put_autosuspend(ddev->dev);
return r;
}
static int ss_power_attr_update(struct amdgpu_device *adev, struct amdgpu_device_attr *attr,
uint32_t mask, enum amdgpu_device_attr_states *states)
{
uint32_t ss_power, size;
if (!amdgpu_acpi_is_power_shift_control_supported())
*states = ATTR_STATE_UNSUPPORTED;
else if ((adev->flags & AMD_IS_PX) &&
!amdgpu_device_supports_smart_shift(adev_to_drm(adev)))
*states = ATTR_STATE_UNSUPPORTED;
else if (amdgpu_dpm_read_sensor(adev, AMDGPU_PP_SENSOR_SS_APU_SHARE,
(void *)&ss_power, &size))
*states = ATTR_STATE_UNSUPPORTED;
else if (amdgpu_dpm_read_sensor(adev, AMDGPU_PP_SENSOR_SS_DGPU_SHARE,
(void *)&ss_power, &size))
*states = ATTR_STATE_UNSUPPORTED;
return 0;
}
static int ss_bias_attr_update(struct amdgpu_device *adev, struct amdgpu_device_attr *attr,
uint32_t mask, enum amdgpu_device_attr_states *states)
{
uint32_t ss_power, size;
if (!amdgpu_device_supports_smart_shift(adev_to_drm(adev)))
*states = ATTR_STATE_UNSUPPORTED;
else if (amdgpu_dpm_read_sensor(adev, AMDGPU_PP_SENSOR_SS_APU_SHARE,
(void *)&ss_power, &size))
*states = ATTR_STATE_UNSUPPORTED;
else if (amdgpu_dpm_read_sensor(adev, AMDGPU_PP_SENSOR_SS_DGPU_SHARE,
(void *)&ss_power, &size))
*states = ATTR_STATE_UNSUPPORTED;
return 0;
}
static struct amdgpu_device_attr amdgpu_device_attrs[] = {
AMDGPU_DEVICE_ATTR_RW(power_dpm_state, ATTR_FLAG_BASIC|ATTR_FLAG_ONEVF),
AMDGPU_DEVICE_ATTR_RW(power_dpm_force_performance_level, ATTR_FLAG_BASIC|ATTR_FLAG_ONEVF),
AMDGPU_DEVICE_ATTR_RO(pp_num_states, ATTR_FLAG_BASIC|ATTR_FLAG_ONEVF),
AMDGPU_DEVICE_ATTR_RO(pp_cur_state, ATTR_FLAG_BASIC|ATTR_FLAG_ONEVF),
AMDGPU_DEVICE_ATTR_RW(pp_force_state, ATTR_FLAG_BASIC|ATTR_FLAG_ONEVF),
AMDGPU_DEVICE_ATTR_RW(pp_table, ATTR_FLAG_BASIC|ATTR_FLAG_ONEVF),
AMDGPU_DEVICE_ATTR_RW(pp_dpm_sclk, ATTR_FLAG_BASIC|ATTR_FLAG_ONEVF),
AMDGPU_DEVICE_ATTR_RW(pp_dpm_mclk, ATTR_FLAG_BASIC|ATTR_FLAG_ONEVF),
AMDGPU_DEVICE_ATTR_RW(pp_dpm_socclk, ATTR_FLAG_BASIC|ATTR_FLAG_ONEVF),
AMDGPU_DEVICE_ATTR_RW(pp_dpm_fclk, ATTR_FLAG_BASIC|ATTR_FLAG_ONEVF),
AMDGPU_DEVICE_ATTR_RW(pp_dpm_vclk, ATTR_FLAG_BASIC|ATTR_FLAG_ONEVF),
AMDGPU_DEVICE_ATTR_RW(pp_dpm_dclk, ATTR_FLAG_BASIC|ATTR_FLAG_ONEVF),
AMDGPU_DEVICE_ATTR_RW(pp_dpm_dcefclk, ATTR_FLAG_BASIC),
AMDGPU_DEVICE_ATTR_RW(pp_dpm_pcie, ATTR_FLAG_BASIC),
AMDGPU_DEVICE_ATTR_RW(pp_sclk_od, ATTR_FLAG_BASIC),
AMDGPU_DEVICE_ATTR_RW(pp_mclk_od, ATTR_FLAG_BASIC),
AMDGPU_DEVICE_ATTR_RW(pp_power_profile_mode, ATTR_FLAG_BASIC),
AMDGPU_DEVICE_ATTR_RW(pp_od_clk_voltage, ATTR_FLAG_BASIC),
AMDGPU_DEVICE_ATTR_RO(gpu_busy_percent, ATTR_FLAG_BASIC),
AMDGPU_DEVICE_ATTR_RO(mem_busy_percent, ATTR_FLAG_BASIC),
AMDGPU_DEVICE_ATTR_RO(pcie_bw, ATTR_FLAG_BASIC),
AMDGPU_DEVICE_ATTR_RW(pp_features, ATTR_FLAG_BASIC),
AMDGPU_DEVICE_ATTR_RO(unique_id, ATTR_FLAG_BASIC),
AMDGPU_DEVICE_ATTR_RW(thermal_throttling_logging, ATTR_FLAG_BASIC),
AMDGPU_DEVICE_ATTR_RO(gpu_metrics, ATTR_FLAG_BASIC),
AMDGPU_DEVICE_ATTR_RO(smartshift_apu_power, ATTR_FLAG_BASIC,
.attr_update = ss_power_attr_update),
AMDGPU_DEVICE_ATTR_RO(smartshift_dgpu_power, ATTR_FLAG_BASIC,
.attr_update = ss_power_attr_update),
AMDGPU_DEVICE_ATTR_RW(smartshift_bias, ATTR_FLAG_BASIC,
.attr_update = ss_bias_attr_update),
};
static int default_attr_update(struct amdgpu_device *adev, struct amdgpu_device_attr *attr,
uint32_t mask, enum amdgpu_device_attr_states *states)
{
struct device_attribute *dev_attr = &attr->dev_attr;
const char *attr_name = dev_attr->attr.name;
struct pp_hwmgr *hwmgr = adev->powerplay.pp_handle;
enum amd_asic_type asic_type = adev->asic_type;
if (!(attr->flags & mask)) {
*states = ATTR_STATE_UNSUPPORTED;
return 0;
}
#define DEVICE_ATTR_IS(_name) (!strcmp(attr_name, #_name))
if (DEVICE_ATTR_IS(pp_dpm_socclk)) {
if (asic_type < CHIP_VEGA10)
*states = ATTR_STATE_UNSUPPORTED;
} else if (DEVICE_ATTR_IS(pp_dpm_dcefclk)) {
if (asic_type < CHIP_VEGA10 ||
asic_type == CHIP_ARCTURUS ||
asic_type == CHIP_ALDEBARAN)
*states = ATTR_STATE_UNSUPPORTED;
} else if (DEVICE_ATTR_IS(pp_dpm_fclk)) {
if (asic_type < CHIP_VEGA20)
*states = ATTR_STATE_UNSUPPORTED;
} else if (DEVICE_ATTR_IS(pp_od_clk_voltage)) {
*states = ATTR_STATE_UNSUPPORTED;
if ((is_support_sw_smu(adev) && adev->smu.od_enabled) ||
(is_support_sw_smu(adev) && adev->smu.is_apu) ||
(!is_support_sw_smu(adev) && hwmgr->od_enabled))
*states = ATTR_STATE_SUPPORTED;
} else if (DEVICE_ATTR_IS(mem_busy_percent)) {
if (adev->flags & AMD_IS_APU || asic_type == CHIP_VEGA10)
*states = ATTR_STATE_UNSUPPORTED;
} else if (DEVICE_ATTR_IS(pcie_bw)) {
/* PCIe Perf counters won't work on APU nodes */
if (adev->flags & AMD_IS_APU)
*states = ATTR_STATE_UNSUPPORTED;
} else if (DEVICE_ATTR_IS(unique_id)) {
if (asic_type != CHIP_VEGA10 &&
asic_type != CHIP_VEGA20 &&
asic_type != CHIP_ARCTURUS)
*states = ATTR_STATE_UNSUPPORTED;
} else if (DEVICE_ATTR_IS(pp_features)) {
if (adev->flags & AMD_IS_APU || asic_type < CHIP_VEGA10)
*states = ATTR_STATE_UNSUPPORTED;
} else if (DEVICE_ATTR_IS(gpu_metrics)) {
if (asic_type < CHIP_VEGA12)
*states = ATTR_STATE_UNSUPPORTED;
} else if (DEVICE_ATTR_IS(pp_dpm_vclk)) {
if (!(asic_type == CHIP_VANGOGH))
*states = ATTR_STATE_UNSUPPORTED;
} else if (DEVICE_ATTR_IS(pp_dpm_dclk)) {
if (!(asic_type == CHIP_VANGOGH))
*states = ATTR_STATE_UNSUPPORTED;
}
switch (asic_type) {
case CHIP_ARCTURUS:
case CHIP_ALDEBARAN:
/* the Mi series card does not support standalone mclk/socclk/fclk level setting */
if (DEVICE_ATTR_IS(pp_dpm_mclk) ||
DEVICE_ATTR_IS(pp_dpm_socclk) ||
DEVICE_ATTR_IS(pp_dpm_fclk)) {
dev_attr->attr.mode &= ~S_IWUGO;
dev_attr->store = NULL;
}
break;
default:
break;
}
if (DEVICE_ATTR_IS(pp_dpm_dcefclk)) {
/* SMU MP1 does not support dcefclk level setting */
if (asic_type >= CHIP_NAVI10) {
dev_attr->attr.mode &= ~S_IWUGO;
dev_attr->store = NULL;
}
}
#undef DEVICE_ATTR_IS
return 0;
}
static int amdgpu_device_attr_create(struct amdgpu_device *adev,
struct amdgpu_device_attr *attr,
uint32_t mask, struct list_head *attr_list)
{
int ret = 0;
struct device_attribute *dev_attr = &attr->dev_attr;
const char *name = dev_attr->attr.name;
enum amdgpu_device_attr_states attr_states = ATTR_STATE_SUPPORTED;
struct amdgpu_device_attr_entry *attr_entry;
int (*attr_update)(struct amdgpu_device *adev, struct amdgpu_device_attr *attr,
uint32_t mask, enum amdgpu_device_attr_states *states) = default_attr_update;
BUG_ON(!attr);
attr_update = attr->attr_update ? attr->attr_update : default_attr_update;
ret = attr_update(adev, attr, mask, &attr_states);
if (ret) {
dev_err(adev->dev, "failed to update device file %s, ret = %d\n",
name, ret);
return ret;
}
if (attr_states == ATTR_STATE_UNSUPPORTED)
return 0;
ret = device_create_file(adev->dev, dev_attr);
if (ret) {
dev_err(adev->dev, "failed to create device file %s, ret = %d\n",
name, ret);
}
attr_entry = kmalloc(sizeof(*attr_entry), GFP_KERNEL);
if (!attr_entry)
return -ENOMEM;
attr_entry->attr = attr;
INIT_LIST_HEAD(&attr_entry->entry);
list_add_tail(&attr_entry->entry, attr_list);
return ret;
}
static void amdgpu_device_attr_remove(struct amdgpu_device *adev, struct amdgpu_device_attr *attr)
{
struct device_attribute *dev_attr = &attr->dev_attr;
device_remove_file(adev->dev, dev_attr);
}
static void amdgpu_device_attr_remove_groups(struct amdgpu_device *adev,
struct list_head *attr_list);
static int amdgpu_device_attr_create_groups(struct amdgpu_device *adev,
struct amdgpu_device_attr *attrs,
uint32_t counts,
uint32_t mask,
struct list_head *attr_list)
{
int ret = 0;
uint32_t i = 0;
for (i = 0; i < counts; i++) {
ret = amdgpu_device_attr_create(adev, &attrs[i], mask, attr_list);
if (ret)
goto failed;
}
return 0;
failed:
amdgpu_device_attr_remove_groups(adev, attr_list);
return ret;
}
static void amdgpu_device_attr_remove_groups(struct amdgpu_device *adev,
struct list_head *attr_list)
{
struct amdgpu_device_attr_entry *entry, *entry_tmp;
if (list_empty(attr_list))
return ;
list_for_each_entry_safe(entry, entry_tmp, attr_list, entry) {
amdgpu_device_attr_remove(adev, entry->attr);
list_del(&entry->entry);
kfree(entry);
}
}
static ssize_t amdgpu_hwmon_show_temp(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct amdgpu_device *adev = dev_get_drvdata(dev);
int channel = to_sensor_dev_attr(attr)->index;
int r, temp = 0, size = sizeof(temp);
if (amdgpu_in_reset(adev))
return -EPERM;
if (adev->in_suspend && !adev->in_runpm)
return -EPERM;
if (channel >= PP_TEMP_MAX)
return -EINVAL;
r = pm_runtime_get_sync(adev_to_drm(adev)->dev);
if (r < 0) {
pm_runtime_put_autosuspend(adev_to_drm(adev)->dev);
return r;
}
switch (channel) {
case PP_TEMP_JUNCTION:
/* get current junction temperature */
r = amdgpu_dpm_read_sensor(adev, AMDGPU_PP_SENSOR_HOTSPOT_TEMP,
(void *)&temp, &size);
break;
case PP_TEMP_EDGE:
/* get current edge temperature */
r = amdgpu_dpm_read_sensor(adev, AMDGPU_PP_SENSOR_EDGE_TEMP,
(void *)&temp, &size);
break;
case PP_TEMP_MEM:
/* get current memory temperature */
r = amdgpu_dpm_read_sensor(adev, AMDGPU_PP_SENSOR_MEM_TEMP,
(void *)&temp, &size);
break;
default:
r = -EINVAL;
break;
}
pm_runtime_mark_last_busy(adev_to_drm(adev)->dev);
pm_runtime_put_autosuspend(adev_to_drm(adev)->dev);
if (r)
return r;
return sysfs_emit(buf, "%d\n", temp);
}
static ssize_t amdgpu_hwmon_show_temp_thresh(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct amdgpu_device *adev = dev_get_drvdata(dev);
int hyst = to_sensor_dev_attr(attr)->index;
int temp;
if (hyst)
temp = adev->pm.dpm.thermal.min_temp;
else
temp = adev->pm.dpm.thermal.max_temp;
return sysfs_emit(buf, "%d\n", temp);
}
static ssize_t amdgpu_hwmon_show_hotspot_temp_thresh(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct amdgpu_device *adev = dev_get_drvdata(dev);
int hyst = to_sensor_dev_attr(attr)->index;
int temp;
if (hyst)
temp = adev->pm.dpm.thermal.min_hotspot_temp;
else
temp = adev->pm.dpm.thermal.max_hotspot_crit_temp;
return sysfs_emit(buf, "%d\n", temp);
}
static ssize_t amdgpu_hwmon_show_mem_temp_thresh(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct amdgpu_device *adev = dev_get_drvdata(dev);
int hyst = to_sensor_dev_attr(attr)->index;
int temp;
if (hyst)
temp = adev->pm.dpm.thermal.min_mem_temp;
else
temp = adev->pm.dpm.thermal.max_mem_crit_temp;
return sysfs_emit(buf, "%d\n", temp);
}
static ssize_t amdgpu_hwmon_show_temp_label(struct device *dev,
struct device_attribute *attr,
char *buf)
{
int channel = to_sensor_dev_attr(attr)->index;
if (channel >= PP_TEMP_MAX)
return -EINVAL;
return sysfs_emit(buf, "%s\n", temp_label[channel].label);
}
static ssize_t amdgpu_hwmon_show_temp_emergency(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct amdgpu_device *adev = dev_get_drvdata(dev);
int channel = to_sensor_dev_attr(attr)->index;
int temp = 0;
if (channel >= PP_TEMP_MAX)
return -EINVAL;
switch (channel) {
case PP_TEMP_JUNCTION:
temp = adev->pm.dpm.thermal.max_hotspot_emergency_temp;
break;
case PP_TEMP_EDGE:
temp = adev->pm.dpm.thermal.max_edge_emergency_temp;
break;
case PP_TEMP_MEM:
temp = adev->pm.dpm.thermal.max_mem_emergency_temp;
break;
}
return sysfs_emit(buf, "%d\n", temp);
}
static ssize_t amdgpu_hwmon_get_pwm1_enable(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct amdgpu_device *adev = dev_get_drvdata(dev);
u32 pwm_mode = 0;
int ret;
if (amdgpu_in_reset(adev))
return -EPERM;
if (adev->in_suspend && !adev->in_runpm)
return -EPERM;
ret = pm_runtime_get_sync(adev_to_drm(adev)->dev);
if (ret < 0) {
pm_runtime_put_autosuspend(adev_to_drm(adev)->dev);
return ret;
}
if (!adev->powerplay.pp_funcs->get_fan_control_mode) {
pm_runtime_mark_last_busy(adev_to_drm(adev)->dev);
pm_runtime_put_autosuspend(adev_to_drm(adev)->dev);
return -EINVAL;
}
pwm_mode = amdgpu_dpm_get_fan_control_mode(adev);
pm_runtime_mark_last_busy(adev_to_drm(adev)->dev);
pm_runtime_put_autosuspend(adev_to_drm(adev)->dev);
return sysfs_emit(buf, "%u\n", pwm_mode);
}
static ssize_t amdgpu_hwmon_set_pwm1_enable(struct device *dev,
struct device_attribute *attr,
const char *buf,
size_t count)
{
struct amdgpu_device *adev = dev_get_drvdata(dev);
int err, ret;
int value;
if (amdgpu_in_reset(adev))
return -EPERM;
if (adev->in_suspend && !adev->in_runpm)
return -EPERM;
err = kstrtoint(buf, 10, &value);
if (err)
return err;
ret = pm_runtime_get_sync(adev_to_drm(adev)->dev);
if (ret < 0) {
pm_runtime_put_autosuspend(adev_to_drm(adev)->dev);
return ret;
}
if (!adev->powerplay.pp_funcs->set_fan_control_mode) {
pm_runtime_mark_last_busy(adev_to_drm(adev)->dev);
pm_runtime_put_autosuspend(adev_to_drm(adev)->dev);
return -EINVAL;
}
amdgpu_dpm_set_fan_control_mode(adev, value);
pm_runtime_mark_last_busy(adev_to_drm(adev)->dev);
pm_runtime_put_autosuspend(adev_to_drm(adev)->dev);
return count;
}
static ssize_t amdgpu_hwmon_get_pwm1_min(struct device *dev,
struct device_attribute *attr,
char *buf)
{
return sysfs_emit(buf, "%i\n", 0);
}
static ssize_t amdgpu_hwmon_get_pwm1_max(struct device *dev,
struct device_attribute *attr,
char *buf)
{
return sysfs_emit(buf, "%i\n", 255);
}
static ssize_t amdgpu_hwmon_set_pwm1(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct amdgpu_device *adev = dev_get_drvdata(dev);
int err;
u32 value;
u32 pwm_mode;
if (amdgpu_in_reset(adev))
return -EPERM;
if (adev->in_suspend && !adev->in_runpm)
return -EPERM;
err = pm_runtime_get_sync(adev_to_drm(adev)->dev);
if (err < 0) {
pm_runtime_put_autosuspend(adev_to_drm(adev)->dev);
return err;
}
pwm_mode = amdgpu_dpm_get_fan_control_mode(adev);
if (pwm_mode != AMD_FAN_CTRL_MANUAL) {
pr_info("manual fan speed control should be enabled first\n");
pm_runtime_mark_last_busy(adev_to_drm(adev)->dev);
pm_runtime_put_autosuspend(adev_to_drm(adev)->dev);
return -EINVAL;
}
err = kstrtou32(buf, 10, &value);
if (err) {
pm_runtime_mark_last_busy(adev_to_drm(adev)->dev);
pm_runtime_put_autosuspend(adev_to_drm(adev)->dev);
return err;
}
if (adev->powerplay.pp_funcs->set_fan_speed_pwm)
err = amdgpu_dpm_set_fan_speed_pwm(adev, value);
else
err = -EINVAL;
pm_runtime_mark_last_busy(adev_to_drm(adev)->dev);
pm_runtime_put_autosuspend(adev_to_drm(adev)->dev);
if (err)
return err;
return count;
}
static ssize_t amdgpu_hwmon_get_pwm1(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct amdgpu_device *adev = dev_get_drvdata(dev);
int err;
u32 speed = 0;
if (amdgpu_in_reset(adev))
return -EPERM;
if (adev->in_suspend && !adev->in_runpm)
return -EPERM;
err = pm_runtime_get_sync(adev_to_drm(adev)->dev);
if (err < 0) {
pm_runtime_put_autosuspend(adev_to_drm(adev)->dev);
return err;
}
if (adev->powerplay.pp_funcs->get_fan_speed_pwm)
err = amdgpu_dpm_get_fan_speed_pwm(adev, &speed);
else
err = -EINVAL;
pm_runtime_mark_last_busy(adev_to_drm(adev)->dev);
pm_runtime_put_autosuspend(adev_to_drm(adev)->dev);
if (err)
return err;
return sysfs_emit(buf, "%i\n", speed);
}
static ssize_t amdgpu_hwmon_get_fan1_input(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct amdgpu_device *adev = dev_get_drvdata(dev);
int err;
u32 speed = 0;
if (amdgpu_in_reset(adev))
return -EPERM;
if (adev->in_suspend && !adev->in_runpm)
return -EPERM;
err = pm_runtime_get_sync(adev_to_drm(adev)->dev);
if (err < 0) {
pm_runtime_put_autosuspend(adev_to_drm(adev)->dev);
return err;
}
if (adev->powerplay.pp_funcs->get_fan_speed_rpm)
err = amdgpu_dpm_get_fan_speed_rpm(adev, &speed);
else
err = -EINVAL;
pm_runtime_mark_last_busy(adev_to_drm(adev)->dev);
pm_runtime_put_autosuspend(adev_to_drm(adev)->dev);
if (err)
return err;
return sysfs_emit(buf, "%i\n", speed);
}
static ssize_t amdgpu_hwmon_get_fan1_min(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct amdgpu_device *adev = dev_get_drvdata(dev);
u32 min_rpm = 0;
u32 size = sizeof(min_rpm);
int r;
if (amdgpu_in_reset(adev))
return -EPERM;
if (adev->in_suspend && !adev->in_runpm)
return -EPERM;
r = pm_runtime_get_sync(adev_to_drm(adev)->dev);
if (r < 0) {
pm_runtime_put_autosuspend(adev_to_drm(adev)->dev);
return r;
}
r = amdgpu_dpm_read_sensor(adev, AMDGPU_PP_SENSOR_MIN_FAN_RPM,
(void *)&min_rpm, &size);
pm_runtime_mark_last_busy(adev_to_drm(adev)->dev);
pm_runtime_put_autosuspend(adev_to_drm(adev)->dev);
if (r)
return r;
return sysfs_emit(buf, "%d\n", min_rpm);
}
static ssize_t amdgpu_hwmon_get_fan1_max(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct amdgpu_device *adev = dev_get_drvdata(dev);
u32 max_rpm = 0;
u32 size = sizeof(max_rpm);
int r;
if (amdgpu_in_reset(adev))
return -EPERM;
if (adev->in_suspend && !adev->in_runpm)
return -EPERM;
r = pm_runtime_get_sync(adev_to_drm(adev)->dev);
if (r < 0) {
pm_runtime_put_autosuspend(adev_to_drm(adev)->dev);
return r;
}
r = amdgpu_dpm_read_sensor(adev, AMDGPU_PP_SENSOR_MAX_FAN_RPM,
(void *)&max_rpm, &size);
pm_runtime_mark_last_busy(adev_to_drm(adev)->dev);
pm_runtime_put_autosuspend(adev_to_drm(adev)->dev);
if (r)
return r;
return sysfs_emit(buf, "%d\n", max_rpm);
}
static ssize_t amdgpu_hwmon_get_fan1_target(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct amdgpu_device *adev = dev_get_drvdata(dev);
int err;
u32 rpm = 0;
if (amdgpu_in_reset(adev))
return -EPERM;
if (adev->in_suspend && !adev->in_runpm)
return -EPERM;
err = pm_runtime_get_sync(adev_to_drm(adev)->dev);
if (err < 0) {
pm_runtime_put_autosuspend(adev_to_drm(adev)->dev);
return err;
}
if (adev->powerplay.pp_funcs->get_fan_speed_rpm)
err = amdgpu_dpm_get_fan_speed_rpm(adev, &rpm);
else
err = -EINVAL;
pm_runtime_mark_last_busy(adev_to_drm(adev)->dev);
pm_runtime_put_autosuspend(adev_to_drm(adev)->dev);
if (err)
return err;
return sysfs_emit(buf, "%i\n", rpm);
}
static ssize_t amdgpu_hwmon_set_fan1_target(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct amdgpu_device *adev = dev_get_drvdata(dev);
int err;
u32 value;
u32 pwm_mode;
if (amdgpu_in_reset(adev))
return -EPERM;
if (adev->in_suspend && !adev->in_runpm)
return -EPERM;
err = pm_runtime_get_sync(adev_to_drm(adev)->dev);
if (err < 0) {
pm_runtime_put_autosuspend(adev_to_drm(adev)->dev);
return err;
}
pwm_mode = amdgpu_dpm_get_fan_control_mode(adev);
if (pwm_mode != AMD_FAN_CTRL_MANUAL) {
pm_runtime_mark_last_busy(adev_to_drm(adev)->dev);
pm_runtime_put_autosuspend(adev_to_drm(adev)->dev);
return -ENODATA;
}
err = kstrtou32(buf, 10, &value);
if (err) {
pm_runtime_mark_last_busy(adev_to_drm(adev)->dev);
pm_runtime_put_autosuspend(adev_to_drm(adev)->dev);
return err;
}
if (adev->powerplay.pp_funcs->set_fan_speed_rpm)
err = amdgpu_dpm_set_fan_speed_rpm(adev, value);
else
err = -EINVAL;
pm_runtime_mark_last_busy(adev_to_drm(adev)->dev);
pm_runtime_put_autosuspend(adev_to_drm(adev)->dev);
if (err)
return err;
return count;
}
static ssize_t amdgpu_hwmon_get_fan1_enable(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct amdgpu_device *adev = dev_get_drvdata(dev);
u32 pwm_mode = 0;
int ret;
if (amdgpu_in_reset(adev))
return -EPERM;
if (adev->in_suspend && !adev->in_runpm)
return -EPERM;
ret = pm_runtime_get_sync(adev_to_drm(adev)->dev);
if (ret < 0) {
pm_runtime_put_autosuspend(adev_to_drm(adev)->dev);
return ret;
}
if (!adev->powerplay.pp_funcs->get_fan_control_mode) {
pm_runtime_mark_last_busy(adev_to_drm(adev)->dev);
pm_runtime_put_autosuspend(adev_to_drm(adev)->dev);
return -EINVAL;
}
pwm_mode = amdgpu_dpm_get_fan_control_mode(adev);
pm_runtime_mark_last_busy(adev_to_drm(adev)->dev);
pm_runtime_put_autosuspend(adev_to_drm(adev)->dev);
return sysfs_emit(buf, "%i\n", pwm_mode == AMD_FAN_CTRL_AUTO ? 0 : 1);
}
static ssize_t amdgpu_hwmon_set_fan1_enable(struct device *dev,
struct device_attribute *attr,
const char *buf,
size_t count)
{
struct amdgpu_device *adev = dev_get_drvdata(dev);
int err;
int value;
u32 pwm_mode;
if (amdgpu_in_reset(adev))
return -EPERM;