blob: d3e1825337be3a8d9ff00a262e74beca753de9f7 [file] [log] [blame]
/* SPDX-License-Identifier: GPL-2.0 */
#ifndef _ASM_EFI_H
#define _ASM_EFI_H
#include <asm/boot.h>
#include <asm/cpufeature.h>
#include <asm/fpsimd.h>
#include <asm/io.h>
#include <asm/memory.h>
#include <asm/mmu_context.h>
#include <asm/neon.h>
#include <asm/ptrace.h>
#include <asm/tlbflush.h>
extern void efi_init(void);
extern void efifb_setup_from_dmi(struct screen_info *si, const char *opt);
#define efi_init()
int efi_create_mapping(struct mm_struct *mm, efi_memory_desc_t *md);
int efi_set_mapping_permissions(struct mm_struct *mm, efi_memory_desc_t *md);
#define arch_efi_call_virt_setup() \
({ \
efi_virtmap_load(); \
__efi_fpsimd_begin(); \
#define arch_efi_call_virt(p, f, args...) \
({ \
efi_##f##_t *__f; \
__f = p->f; \
__efi_rt_asm_wrapper(__f, #f, args); \
#define arch_efi_call_virt_teardown() \
({ \
__efi_fpsimd_end(); \
efi_virtmap_unload(); \
efi_status_t __efi_rt_asm_wrapper(void *, const char *, ...);
* Even when Linux uses IRQ priorities for IRQ disabling, EFI does not.
* And EFI shouldn't really play around with priority masking as it is not aware
* which priorities the OS has assigned to its interrupts.
#define arch_efi_save_flags(state_flags) \
((void)((state_flags) = read_sysreg(daif)))
#define arch_efi_restore_flags(state_flags) write_sysreg(state_flags, daif)
/* arch specific definitions used by the stub code */
* In some configurations (e.g. VMAP_STACK && 64K pages), stacks built into the
* kernel need greater alignment than we require the segments to be padded to.
#define EFI_KIMG_ALIGN \
* On arm64, we have to ensure that the initrd ends up in the linear region,
* which is a 1 GB aligned region of size '1UL << (VA_BITS_MIN - 1)' that is
* guaranteed to cover the kernel Image.
* Since the EFI stub is part of the kernel Image, we can relax the
* usual requirements in Documentation/arm64/booting.rst, which still
* apply to other bootloaders, and are required for some kernel
* configurations.
static inline unsigned long efi_get_max_initrd_addr(unsigned long image_addr)
return (image_addr & ~(SZ_1G - 1UL)) + (1UL << (VA_BITS_MIN - 1));
#define alloc_screen_info(x...) &screen_info
static inline void free_screen_info(struct screen_info *si)
* On ARM systems, virtually remapped UEFI runtime services are set up in two
* distinct stages:
* - The stub retrieves the final version of the memory map from UEFI, populates
* the virt_addr fields and calls the SetVirtualAddressMap() [SVAM] runtime
* service to communicate the new mapping to the firmware (Note that the new
* mapping is not live at this time)
* - During an early initcall(), the EFI system table is permanently remapped
* and the virtual remapping of the UEFI Runtime Services regions is loaded
* into a private set of page tables. If this all succeeds, the Runtime
* Services are enabled and the EFI_RUNTIME_SERVICES bit set.
static inline void efi_set_pgd(struct mm_struct *mm)
if (system_uses_ttbr0_pan()) {
if (mm != current->active_mm) {
* Update the current thread's saved ttbr0 since it is
* restored as part of a return from exception. Enable
* access to the valid TTBR0_EL1 and invoke the errata
* workaround directly since there is no return from
* exception when invoking the EFI run-time services.
update_saved_ttbr0(current, mm);
} else {
* Defer the switch to the current thread's TTBR0_EL1
* until uaccess_enable(). Restore the current
* thread's saved ttbr0 corresponding to its active_mm
update_saved_ttbr0(current, current->active_mm);
void efi_virtmap_load(void);
void efi_virtmap_unload(void);
static inline void efi_capsule_flush_cache_range(void *addr, int size)
dcache_clean_inval_poc((unsigned long)addr, (unsigned long)addr + size);
#endif /* _ASM_EFI_H */