blob: 6d655e158267a837d2085baa0898a137611a35e2 [file] [log] [blame]
/*
* Copyright 2015 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: AMD
*/
#include "dm_services.h"
#include "dc.h"
#include "dc_link_dp.h"
#include "dm_helpers.h"
#include "opp.h"
#include "dsc.h"
#include "resource.h"
#include "inc/core_types.h"
#include "link_hwss.h"
#include "dc_link_ddc.h"
#include "core_status.h"
#include "dpcd_defs.h"
#include "dc_dmub_srv.h"
#include "dce/dmub_hw_lock_mgr.h"
#include "inc/link_enc_cfg.h"
/*Travis*/
static const uint8_t DP_VGA_LVDS_CONVERTER_ID_2[] = "sivarT";
/*Nutmeg*/
static const uint8_t DP_VGA_LVDS_CONVERTER_ID_3[] = "dnomlA";
#define DC_LOGGER \
link->ctx->logger
#define DC_TRACE_LEVEL_MESSAGE(...) /* do nothing */
#include "link_dpcd.h"
/* maximum pre emphasis level allowed for each voltage swing level*/
static const enum dc_pre_emphasis
voltage_swing_to_pre_emphasis[] = { PRE_EMPHASIS_LEVEL3,
PRE_EMPHASIS_LEVEL2,
PRE_EMPHASIS_LEVEL1,
PRE_EMPHASIS_DISABLED };
enum {
POST_LT_ADJ_REQ_LIMIT = 6,
POST_LT_ADJ_REQ_TIMEOUT = 200
};
static bool decide_fallback_link_setting(
struct dc_link_settings initial_link_settings,
struct dc_link_settings *current_link_setting,
enum link_training_result training_result);
static struct dc_link_settings get_common_supported_link_settings(
struct dc_link_settings link_setting_a,
struct dc_link_settings link_setting_b);
static uint32_t get_cr_training_aux_rd_interval(struct dc_link *link,
const struct dc_link_settings *link_settings)
{
union training_aux_rd_interval training_rd_interval;
uint32_t wait_in_micro_secs = 100;
memset(&training_rd_interval, 0, sizeof(training_rd_interval));
core_link_read_dpcd(
link,
DP_TRAINING_AUX_RD_INTERVAL,
(uint8_t *)&training_rd_interval,
sizeof(training_rd_interval));
if (training_rd_interval.bits.TRAINIG_AUX_RD_INTERVAL)
wait_in_micro_secs = training_rd_interval.bits.TRAINIG_AUX_RD_INTERVAL * 4000;
return wait_in_micro_secs;
}
static uint32_t get_eq_training_aux_rd_interval(
struct dc_link *link,
const struct dc_link_settings *link_settings)
{
union training_aux_rd_interval training_rd_interval;
uint32_t wait_in_micro_secs = 400;
memset(&training_rd_interval, 0, sizeof(training_rd_interval));
/* overwrite the delay if rev > 1.1*/
if (link->dpcd_caps.dpcd_rev.raw >= DPCD_REV_12) {
/* DP 1.2 or later - retrieve delay through
* "DPCD_ADDR_TRAINING_AUX_RD_INTERVAL" register */
core_link_read_dpcd(
link,
DP_TRAINING_AUX_RD_INTERVAL,
(uint8_t *)&training_rd_interval,
sizeof(training_rd_interval));
if (training_rd_interval.bits.TRAINIG_AUX_RD_INTERVAL)
wait_in_micro_secs = training_rd_interval.bits.TRAINIG_AUX_RD_INTERVAL * 4000;
}
return wait_in_micro_secs;
}
void dp_wait_for_training_aux_rd_interval(
struct dc_link *link,
uint32_t wait_in_micro_secs)
{
udelay(wait_in_micro_secs);
DC_LOG_HW_LINK_TRAINING("%s:\n wait = %d\n",
__func__,
wait_in_micro_secs);
}
enum dpcd_training_patterns
dc_dp_training_pattern_to_dpcd_training_pattern(
struct dc_link *link,
enum dc_dp_training_pattern pattern)
{
enum dpcd_training_patterns dpcd_tr_pattern =
DPCD_TRAINING_PATTERN_VIDEOIDLE;
switch (pattern) {
case DP_TRAINING_PATTERN_SEQUENCE_1:
dpcd_tr_pattern = DPCD_TRAINING_PATTERN_1;
break;
case DP_TRAINING_PATTERN_SEQUENCE_2:
dpcd_tr_pattern = DPCD_TRAINING_PATTERN_2;
break;
case DP_TRAINING_PATTERN_SEQUENCE_3:
dpcd_tr_pattern = DPCD_TRAINING_PATTERN_3;
break;
case DP_TRAINING_PATTERN_SEQUENCE_4:
dpcd_tr_pattern = DPCD_TRAINING_PATTERN_4;
break;
case DP_TRAINING_PATTERN_VIDEOIDLE:
dpcd_tr_pattern = DPCD_TRAINING_PATTERN_VIDEOIDLE;
break;
default:
ASSERT(0);
DC_LOG_HW_LINK_TRAINING("%s: Invalid HW Training pattern: %d\n",
__func__, pattern);
break;
}
return dpcd_tr_pattern;
}
static void dpcd_set_training_pattern(
struct dc_link *link,
enum dc_dp_training_pattern training_pattern)
{
union dpcd_training_pattern dpcd_pattern = { {0} };
dpcd_pattern.v1_4.TRAINING_PATTERN_SET =
dc_dp_training_pattern_to_dpcd_training_pattern(
link, training_pattern);
core_link_write_dpcd(
link,
DP_TRAINING_PATTERN_SET,
&dpcd_pattern.raw,
1);
DC_LOG_HW_LINK_TRAINING("%s\n %x pattern = %x\n",
__func__,
DP_TRAINING_PATTERN_SET,
dpcd_pattern.v1_4.TRAINING_PATTERN_SET);
}
static enum dc_dp_training_pattern decide_cr_training_pattern(
const struct dc_link_settings *link_settings)
{
return DP_TRAINING_PATTERN_SEQUENCE_1;
}
static enum dc_dp_training_pattern decide_eq_training_pattern(struct dc_link *link,
const struct dc_link_settings *link_settings)
{
struct link_encoder *link_enc;
enum dc_dp_training_pattern highest_tp = DP_TRAINING_PATTERN_SEQUENCE_2;
struct encoder_feature_support *features;
struct dpcd_caps *dpcd_caps = &link->dpcd_caps;
/* Access link encoder capability based on whether it is statically
* or dynamically assigned to a link.
*/
if (link->is_dig_mapping_flexible &&
link->dc->res_pool->funcs->link_encs_assign)
link_enc = link_enc_cfg_get_link_enc_used_by_link(link->dc->current_state, link);
else
link_enc = link->link_enc;
ASSERT(link_enc);
features = &link_enc->features;
if (features->flags.bits.IS_TPS3_CAPABLE)
highest_tp = DP_TRAINING_PATTERN_SEQUENCE_3;
if (features->flags.bits.IS_TPS4_CAPABLE)
highest_tp = DP_TRAINING_PATTERN_SEQUENCE_4;
if (dpcd_caps->max_down_spread.bits.TPS4_SUPPORTED &&
highest_tp >= DP_TRAINING_PATTERN_SEQUENCE_4)
return DP_TRAINING_PATTERN_SEQUENCE_4;
if (dpcd_caps->max_ln_count.bits.TPS3_SUPPORTED &&
highest_tp >= DP_TRAINING_PATTERN_SEQUENCE_3)
return DP_TRAINING_PATTERN_SEQUENCE_3;
return DP_TRAINING_PATTERN_SEQUENCE_2;
}
enum dc_status dpcd_set_link_settings(
struct dc_link *link,
const struct link_training_settings *lt_settings)
{
uint8_t rate;
enum dc_status status;
union down_spread_ctrl downspread = { {0} };
union lane_count_set lane_count_set = { {0} };
downspread.raw = (uint8_t)
(lt_settings->link_settings.link_spread);
lane_count_set.bits.LANE_COUNT_SET =
lt_settings->link_settings.lane_count;
lane_count_set.bits.ENHANCED_FRAMING = lt_settings->enhanced_framing;
lane_count_set.bits.POST_LT_ADJ_REQ_GRANTED = 0;
if (link->ep_type == DISPLAY_ENDPOINT_PHY &&
lt_settings->pattern_for_eq < DP_TRAINING_PATTERN_SEQUENCE_4) {
lane_count_set.bits.POST_LT_ADJ_REQ_GRANTED =
link->dpcd_caps.max_ln_count.bits.POST_LT_ADJ_REQ_SUPPORTED;
}
status = core_link_write_dpcd(link, DP_DOWNSPREAD_CTRL,
&downspread.raw, sizeof(downspread));
status = core_link_write_dpcd(link, DP_LANE_COUNT_SET,
&lane_count_set.raw, 1);
if (link->dpcd_caps.dpcd_rev.raw >= DPCD_REV_14 &&
lt_settings->link_settings.use_link_rate_set == true) {
rate = 0;
/* WA for some MUX chips that will power down with eDP and lose supported
* link rate set for eDP 1.4. Source reads DPCD 0x010 again to ensure
* MUX chip gets link rate set back before link training.
*/
if (link->connector_signal == SIGNAL_TYPE_EDP) {
uint8_t supported_link_rates[16];
core_link_read_dpcd(link, DP_SUPPORTED_LINK_RATES,
supported_link_rates, sizeof(supported_link_rates));
}
status = core_link_write_dpcd(link, DP_LINK_BW_SET, &rate, 1);
status = core_link_write_dpcd(link, DP_LINK_RATE_SET,
&lt_settings->link_settings.link_rate_set, 1);
} else {
rate = (uint8_t) (lt_settings->link_settings.link_rate);
status = core_link_write_dpcd(link, DP_LINK_BW_SET, &rate, 1);
}
if (rate) {
DC_LOG_HW_LINK_TRAINING("%s\n %x rate = %x\n %x lane = %x framing = %x\n %x spread = %x\n",
__func__,
DP_LINK_BW_SET,
lt_settings->link_settings.link_rate,
DP_LANE_COUNT_SET,
lt_settings->link_settings.lane_count,
lt_settings->enhanced_framing,
DP_DOWNSPREAD_CTRL,
lt_settings->link_settings.link_spread);
} else {
DC_LOG_HW_LINK_TRAINING("%s\n %x rate set = %x\n %x lane = %x framing = %x\n %x spread = %x\n",
__func__,
DP_LINK_RATE_SET,
lt_settings->link_settings.link_rate_set,
DP_LANE_COUNT_SET,
lt_settings->link_settings.lane_count,
lt_settings->enhanced_framing,
DP_DOWNSPREAD_CTRL,
lt_settings->link_settings.link_spread);
}
return status;
}
uint8_t dc_dp_initialize_scrambling_data_symbols(
struct dc_link *link,
enum dc_dp_training_pattern pattern)
{
uint8_t disable_scrabled_data_symbols = 0;
switch (pattern) {
case DP_TRAINING_PATTERN_SEQUENCE_1:
case DP_TRAINING_PATTERN_SEQUENCE_2:
case DP_TRAINING_PATTERN_SEQUENCE_3:
disable_scrabled_data_symbols = 1;
break;
case DP_TRAINING_PATTERN_SEQUENCE_4:
disable_scrabled_data_symbols = 0;
break;
default:
ASSERT(0);
DC_LOG_HW_LINK_TRAINING("%s: Invalid HW Training pattern: %d\n",
__func__, pattern);
break;
}
return disable_scrabled_data_symbols;
}
static inline bool is_repeater(struct dc_link *link, uint32_t offset)
{
return (link->lttpr_mode == LTTPR_MODE_NON_TRANSPARENT) && (offset != 0);
}
static void dpcd_set_lt_pattern_and_lane_settings(
struct dc_link *link,
const struct link_training_settings *lt_settings,
enum dc_dp_training_pattern pattern,
uint32_t offset)
{
union dpcd_training_lane dpcd_lane[LANE_COUNT_DP_MAX] = { { {0} } };
uint32_t dpcd_base_lt_offset;
uint8_t dpcd_lt_buffer[5] = {0};
union dpcd_training_pattern dpcd_pattern = { {0} };
uint32_t lane;
uint32_t size_in_bytes;
bool edp_workaround = false; /* TODO link_prop.INTERNAL */
dpcd_base_lt_offset = DP_TRAINING_PATTERN_SET;
if (is_repeater(link, offset))
dpcd_base_lt_offset = DP_TRAINING_PATTERN_SET_PHY_REPEATER1 +
((DP_REPEATER_CONFIGURATION_AND_STATUS_SIZE) * (offset - 1));
/*****************************************************************
* DpcdAddress_TrainingPatternSet
*****************************************************************/
dpcd_pattern.v1_4.TRAINING_PATTERN_SET =
dc_dp_training_pattern_to_dpcd_training_pattern(link, pattern);
dpcd_pattern.v1_4.SCRAMBLING_DISABLE =
dc_dp_initialize_scrambling_data_symbols(link, pattern);
dpcd_lt_buffer[DP_TRAINING_PATTERN_SET - DP_TRAINING_PATTERN_SET]
= dpcd_pattern.raw;
if (is_repeater(link, offset)) {
DC_LOG_HW_LINK_TRAINING("%s\n LTTPR Repeater ID: %d\n 0x%X pattern = %x\n",
__func__,
offset,
dpcd_base_lt_offset,
dpcd_pattern.v1_4.TRAINING_PATTERN_SET);
} else {
DC_LOG_HW_LINK_TRAINING("%s\n 0x%X pattern = %x\n",
__func__,
dpcd_base_lt_offset,
dpcd_pattern.v1_4.TRAINING_PATTERN_SET);
}
/*****************************************************************
* DpcdAddress_Lane0Set -> DpcdAddress_Lane3Set
*****************************************************************/
for (lane = 0; lane <
(uint32_t)(lt_settings->link_settings.lane_count); lane++) {
dpcd_lane[lane].bits.VOLTAGE_SWING_SET =
(uint8_t)(lt_settings->lane_settings[lane].VOLTAGE_SWING);
dpcd_lane[lane].bits.PRE_EMPHASIS_SET =
(uint8_t)(lt_settings->lane_settings[lane].PRE_EMPHASIS);
dpcd_lane[lane].bits.MAX_SWING_REACHED =
(lt_settings->lane_settings[lane].VOLTAGE_SWING ==
VOLTAGE_SWING_MAX_LEVEL ? 1 : 0);
dpcd_lane[lane].bits.MAX_PRE_EMPHASIS_REACHED =
(lt_settings->lane_settings[lane].PRE_EMPHASIS ==
PRE_EMPHASIS_MAX_LEVEL ? 1 : 0);
}
/* concatenate everything into one buffer*/
size_in_bytes = lt_settings->link_settings.lane_count * sizeof(dpcd_lane[0]);
// 0x00103 - 0x00102
memmove(
&dpcd_lt_buffer[DP_TRAINING_LANE0_SET - DP_TRAINING_PATTERN_SET],
dpcd_lane,
size_in_bytes);
if (is_repeater(link, offset)) {
DC_LOG_HW_LINK_TRAINING("%s:\n LTTPR Repeater ID: %d\n"
" 0x%X VS set = %x PE set = %x max VS Reached = %x max PE Reached = %x\n",
__func__,
offset,
dpcd_base_lt_offset,
dpcd_lane[0].bits.VOLTAGE_SWING_SET,
dpcd_lane[0].bits.PRE_EMPHASIS_SET,
dpcd_lane[0].bits.MAX_SWING_REACHED,
dpcd_lane[0].bits.MAX_PRE_EMPHASIS_REACHED);
} else {
DC_LOG_HW_LINK_TRAINING("%s:\n 0x%X VS set = %x PE set = %x max VS Reached = %x max PE Reached = %x\n",
__func__,
dpcd_base_lt_offset,
dpcd_lane[0].bits.VOLTAGE_SWING_SET,
dpcd_lane[0].bits.PRE_EMPHASIS_SET,
dpcd_lane[0].bits.MAX_SWING_REACHED,
dpcd_lane[0].bits.MAX_PRE_EMPHASIS_REACHED);
}
if (edp_workaround) {
/* for eDP write in 2 parts because the 5-byte burst is
* causing issues on some eDP panels (EPR#366724)
*/
core_link_write_dpcd(
link,
DP_TRAINING_PATTERN_SET,
&dpcd_pattern.raw,
sizeof(dpcd_pattern.raw));
core_link_write_dpcd(
link,
DP_TRAINING_LANE0_SET,
(uint8_t *)(dpcd_lane),
size_in_bytes);
} else
/* write it all in (1 + number-of-lanes)-byte burst*/
core_link_write_dpcd(
link,
dpcd_base_lt_offset,
dpcd_lt_buffer,
size_in_bytes + sizeof(dpcd_pattern.raw));
link->cur_lane_setting = lt_settings->lane_settings[0];
}
bool dp_is_cr_done(enum dc_lane_count ln_count,
union lane_status *dpcd_lane_status)
{
uint32_t lane;
/*LANEx_CR_DONE bits All 1's?*/
for (lane = 0; lane < (uint32_t)(ln_count); lane++) {
if (!dpcd_lane_status[lane].bits.CR_DONE_0)
return false;
}
return true;
}
bool dp_is_ch_eq_done(enum dc_lane_count ln_count,
union lane_status *dpcd_lane_status)
{
bool done = true;
uint32_t lane;
for (lane = 0; lane < (uint32_t)(ln_count); lane++)
if (!dpcd_lane_status[lane].bits.CHANNEL_EQ_DONE_0)
done = false;
return done;
}
bool dp_is_symbol_locked(enum dc_lane_count ln_count,
union lane_status *dpcd_lane_status)
{
bool locked = true;
uint32_t lane;
for (lane = 0; lane < (uint32_t)(ln_count); lane++)
if (!dpcd_lane_status[lane].bits.SYMBOL_LOCKED_0)
locked = false;
return locked;
}
bool dp_is_interlane_aligned(union lane_align_status_updated align_status)
{
return align_status.bits.INTERLANE_ALIGN_DONE == 1;
}
void dp_update_drive_settings(
struct link_training_settings *dest,
struct link_training_settings src)
{
uint32_t lane;
for (lane = 0; lane < src.link_settings.lane_count; lane++) {
if (dest->voltage_swing == NULL)
dest->lane_settings[lane].VOLTAGE_SWING = src.lane_settings[lane].VOLTAGE_SWING;
else
dest->lane_settings[lane].VOLTAGE_SWING = *dest->voltage_swing;
if (dest->pre_emphasis == NULL)
dest->lane_settings[lane].PRE_EMPHASIS = src.lane_settings[lane].PRE_EMPHASIS;
else
dest->lane_settings[lane].PRE_EMPHASIS = *dest->pre_emphasis;
if (dest->post_cursor2 == NULL)
dest->lane_settings[lane].POST_CURSOR2 = src.lane_settings[lane].POST_CURSOR2;
else
dest->lane_settings[lane].POST_CURSOR2 = *dest->post_cursor2;
}
}
static uint8_t get_nibble_at_index(const uint8_t *buf,
uint32_t index)
{
uint8_t nibble;
nibble = buf[index / 2];
if (index % 2)
nibble >>= 4;
else
nibble &= 0x0F;
return nibble;
}
static enum dc_pre_emphasis get_max_pre_emphasis_for_voltage_swing(
enum dc_voltage_swing voltage)
{
enum dc_pre_emphasis pre_emphasis;
pre_emphasis = PRE_EMPHASIS_MAX_LEVEL;
if (voltage <= VOLTAGE_SWING_MAX_LEVEL)
pre_emphasis = voltage_swing_to_pre_emphasis[voltage];
return pre_emphasis;
}
static void find_max_drive_settings(
const struct link_training_settings *link_training_setting,
struct link_training_settings *max_lt_setting)
{
uint32_t lane;
struct dc_lane_settings max_requested;
max_requested.VOLTAGE_SWING =
link_training_setting->
lane_settings[0].VOLTAGE_SWING;
max_requested.PRE_EMPHASIS =
link_training_setting->
lane_settings[0].PRE_EMPHASIS;
/*max_requested.postCursor2 =
* link_training_setting->laneSettings[0].postCursor2;*/
/* Determine what the maximum of the requested settings are*/
for (lane = 1; lane < link_training_setting->link_settings.lane_count;
lane++) {
if (link_training_setting->lane_settings[lane].VOLTAGE_SWING >
max_requested.VOLTAGE_SWING)
max_requested.VOLTAGE_SWING =
link_training_setting->
lane_settings[lane].VOLTAGE_SWING;
if (link_training_setting->lane_settings[lane].PRE_EMPHASIS >
max_requested.PRE_EMPHASIS)
max_requested.PRE_EMPHASIS =
link_training_setting->
lane_settings[lane].PRE_EMPHASIS;
/*
if (link_training_setting->laneSettings[lane].postCursor2 >
max_requested.postCursor2)
{
max_requested.postCursor2 =
link_training_setting->laneSettings[lane].postCursor2;
}
*/
}
/* make sure the requested settings are
* not higher than maximum settings*/
if (max_requested.VOLTAGE_SWING > VOLTAGE_SWING_MAX_LEVEL)
max_requested.VOLTAGE_SWING = VOLTAGE_SWING_MAX_LEVEL;
if (max_requested.PRE_EMPHASIS > PRE_EMPHASIS_MAX_LEVEL)
max_requested.PRE_EMPHASIS = PRE_EMPHASIS_MAX_LEVEL;
/*
if (max_requested.postCursor2 > PostCursor2_MaxLevel)
max_requested.postCursor2 = PostCursor2_MaxLevel;
*/
/* make sure the pre-emphasis matches the voltage swing*/
if (max_requested.PRE_EMPHASIS >
get_max_pre_emphasis_for_voltage_swing(
max_requested.VOLTAGE_SWING))
max_requested.PRE_EMPHASIS =
get_max_pre_emphasis_for_voltage_swing(
max_requested.VOLTAGE_SWING);
/*
* Post Cursor2 levels are completely independent from
* pre-emphasis (Post Cursor1) levels. But Post Cursor2 levels
* can only be applied to each allowable combination of voltage
* swing and pre-emphasis levels */
/* if ( max_requested.postCursor2 >
* getMaxPostCursor2ForVoltageSwing(max_requested.voltageSwing))
* max_requested.postCursor2 =
* getMaxPostCursor2ForVoltageSwing(max_requested.voltageSwing);
*/
max_lt_setting->link_settings.link_rate =
link_training_setting->link_settings.link_rate;
max_lt_setting->link_settings.lane_count =
link_training_setting->link_settings.lane_count;
max_lt_setting->link_settings.link_spread =
link_training_setting->link_settings.link_spread;
for (lane = 0; lane <
link_training_setting->link_settings.lane_count;
lane++) {
max_lt_setting->lane_settings[lane].VOLTAGE_SWING =
max_requested.VOLTAGE_SWING;
max_lt_setting->lane_settings[lane].PRE_EMPHASIS =
max_requested.PRE_EMPHASIS;
/*max_lt_setting->laneSettings[lane].postCursor2 =
* max_requested.postCursor2;
*/
}
}
enum dc_status dp_get_lane_status_and_drive_settings(
struct dc_link *link,
const struct link_training_settings *link_training_setting,
union lane_status *ln_status,
union lane_align_status_updated *ln_status_updated,
struct link_training_settings *req_settings,
uint32_t offset)
{
unsigned int lane01_status_address = DP_LANE0_1_STATUS;
uint8_t lane_adjust_offset = 4;
unsigned int lane01_adjust_address;
uint8_t dpcd_buf[6] = {0};
union lane_adjust dpcd_lane_adjust[LANE_COUNT_DP_MAX] = { { {0} } };
struct link_training_settings request_settings = { {0} };
uint32_t lane;
enum dc_status status;
memset(req_settings, '\0', sizeof(struct link_training_settings));
if (is_repeater(link, offset)) {
lane01_status_address =
DP_LANE0_1_STATUS_PHY_REPEATER1 +
((DP_REPEATER_CONFIGURATION_AND_STATUS_SIZE) * (offset - 1));
lane_adjust_offset = 3;
}
status = core_link_read_dpcd(
link,
lane01_status_address,
(uint8_t *)(dpcd_buf),
sizeof(dpcd_buf));
for (lane = 0; lane <
(uint32_t)(link_training_setting->link_settings.lane_count);
lane++) {
ln_status[lane].raw =
get_nibble_at_index(&dpcd_buf[0], lane);
dpcd_lane_adjust[lane].raw =
get_nibble_at_index(&dpcd_buf[lane_adjust_offset], lane);
}
ln_status_updated->raw = dpcd_buf[2];
if (is_repeater(link, offset)) {
DC_LOG_HW_LINK_TRAINING("%s:\n LTTPR Repeater ID: %d\n"
" 0x%X Lane01Status = %x\n 0x%X Lane23Status = %x\n ",
__func__,
offset,
lane01_status_address, dpcd_buf[0],
lane01_status_address + 1, dpcd_buf[1]);
} else {
DC_LOG_HW_LINK_TRAINING("%s:\n 0x%X Lane01Status = %x\n 0x%X Lane23Status = %x\n ",
__func__,
lane01_status_address, dpcd_buf[0],
lane01_status_address + 1, dpcd_buf[1]);
}
lane01_adjust_address = DP_ADJUST_REQUEST_LANE0_1;
if (is_repeater(link, offset))
lane01_adjust_address = DP_ADJUST_REQUEST_LANE0_1_PHY_REPEATER1 +
((DP_REPEATER_CONFIGURATION_AND_STATUS_SIZE) * (offset - 1));
if (is_repeater(link, offset)) {
DC_LOG_HW_LINK_TRAINING("%s:\n LTTPR Repeater ID: %d\n"
" 0x%X Lane01AdjustRequest = %x\n 0x%X Lane23AdjustRequest = %x\n",
__func__,
offset,
lane01_adjust_address,
dpcd_buf[lane_adjust_offset],
lane01_adjust_address + 1,
dpcd_buf[lane_adjust_offset + 1]);
} else {
DC_LOG_HW_LINK_TRAINING("%s:\n 0x%X Lane01AdjustRequest = %x\n 0x%X Lane23AdjustRequest = %x\n",
__func__,
lane01_adjust_address,
dpcd_buf[lane_adjust_offset],
lane01_adjust_address + 1,
dpcd_buf[lane_adjust_offset + 1]);
}
/*copy to req_settings*/
request_settings.link_settings.lane_count =
link_training_setting->link_settings.lane_count;
request_settings.link_settings.link_rate =
link_training_setting->link_settings.link_rate;
request_settings.link_settings.link_spread =
link_training_setting->link_settings.link_spread;
for (lane = 0; lane <
(uint32_t)(link_training_setting->link_settings.lane_count);
lane++) {
request_settings.lane_settings[lane].VOLTAGE_SWING =
(enum dc_voltage_swing)(dpcd_lane_adjust[lane].bits.
VOLTAGE_SWING_LANE);
request_settings.lane_settings[lane].PRE_EMPHASIS =
(enum dc_pre_emphasis)(dpcd_lane_adjust[lane].bits.
PRE_EMPHASIS_LANE);
}
/*Note: for postcursor2, read adjusted
* postcursor2 settings from*/
/*DpcdAddress_AdjustRequestPostCursor2 =
*0x020C (not implemented yet)*/
/* we find the maximum of the requested settings across all lanes*/
/* and set this maximum for all lanes*/
find_max_drive_settings(&request_settings, req_settings);
/* if post cursor 2 is needed in the future,
* read DpcdAddress_AdjustRequestPostCursor2 = 0x020C
*/
return status;
}
enum dc_status dpcd_set_lane_settings(
struct dc_link *link,
const struct link_training_settings *link_training_setting,
uint32_t offset)
{
union dpcd_training_lane dpcd_lane[LANE_COUNT_DP_MAX] = {{{0}}};
uint32_t lane;
unsigned int lane0_set_address;
enum dc_status status;
lane0_set_address = DP_TRAINING_LANE0_SET;
if (is_repeater(link, offset))
lane0_set_address = DP_TRAINING_LANE0_SET_PHY_REPEATER1 +
((DP_REPEATER_CONFIGURATION_AND_STATUS_SIZE) * (offset - 1));
for (lane = 0; lane <
(uint32_t)(link_training_setting->
link_settings.lane_count);
lane++) {
dpcd_lane[lane].bits.VOLTAGE_SWING_SET =
(uint8_t)(link_training_setting->
lane_settings[lane].VOLTAGE_SWING);
dpcd_lane[lane].bits.PRE_EMPHASIS_SET =
(uint8_t)(link_training_setting->
lane_settings[lane].PRE_EMPHASIS);
dpcd_lane[lane].bits.MAX_SWING_REACHED =
(link_training_setting->
lane_settings[lane].VOLTAGE_SWING ==
VOLTAGE_SWING_MAX_LEVEL ? 1 : 0);
dpcd_lane[lane].bits.MAX_PRE_EMPHASIS_REACHED =
(link_training_setting->
lane_settings[lane].PRE_EMPHASIS ==
PRE_EMPHASIS_MAX_LEVEL ? 1 : 0);
}
status = core_link_write_dpcd(link,
lane0_set_address,
(uint8_t *)(dpcd_lane),
link_training_setting->link_settings.lane_count);
/*
if (LTSettings.link.rate == LinkRate_High2)
{
DpcdTrainingLaneSet2 dpcd_lane2[lane_count_DPMax] = {0};
for ( uint32_t lane = 0;
lane < lane_count_DPMax; lane++)
{
dpcd_lane2[lane].bits.post_cursor2_set =
static_cast<unsigned char>(
LTSettings.laneSettings[lane].postCursor2);
dpcd_lane2[lane].bits.max_post_cursor2_reached = 0;
}
m_pDpcdAccessSrv->WriteDpcdData(
DpcdAddress_Lane0Set2,
reinterpret_cast<unsigned char*>(dpcd_lane2),
LTSettings.link.lanes);
}
*/
if (is_repeater(link, offset)) {
DC_LOG_HW_LINK_TRAINING("%s\n LTTPR Repeater ID: %d\n"
" 0x%X VS set = %x PE set = %x max VS Reached = %x max PE Reached = %x\n",
__func__,
offset,
lane0_set_address,
dpcd_lane[0].bits.VOLTAGE_SWING_SET,
dpcd_lane[0].bits.PRE_EMPHASIS_SET,
dpcd_lane[0].bits.MAX_SWING_REACHED,
dpcd_lane[0].bits.MAX_PRE_EMPHASIS_REACHED);
} else {
DC_LOG_HW_LINK_TRAINING("%s\n 0x%X VS set = %x PE set = %x max VS Reached = %x max PE Reached = %x\n",
__func__,
lane0_set_address,
dpcd_lane[0].bits.VOLTAGE_SWING_SET,
dpcd_lane[0].bits.PRE_EMPHASIS_SET,
dpcd_lane[0].bits.MAX_SWING_REACHED,
dpcd_lane[0].bits.MAX_PRE_EMPHASIS_REACHED);
}
link->cur_lane_setting = link_training_setting->lane_settings[0];
return status;
}
bool dp_is_max_vs_reached(
const struct link_training_settings *lt_settings)
{
uint32_t lane;
for (lane = 0; lane <
(uint32_t)(lt_settings->link_settings.lane_count);
lane++) {
if (lt_settings->lane_settings[lane].VOLTAGE_SWING
== VOLTAGE_SWING_MAX_LEVEL)
return true;
}
return false;
}
static bool perform_post_lt_adj_req_sequence(
struct dc_link *link,
struct link_training_settings *lt_settings)
{
enum dc_lane_count lane_count =
lt_settings->link_settings.lane_count;
uint32_t adj_req_count;
uint32_t adj_req_timer;
bool req_drv_setting_changed;
uint32_t lane;
req_drv_setting_changed = false;
for (adj_req_count = 0; adj_req_count < POST_LT_ADJ_REQ_LIMIT;
adj_req_count++) {
req_drv_setting_changed = false;
for (adj_req_timer = 0;
adj_req_timer < POST_LT_ADJ_REQ_TIMEOUT;
adj_req_timer++) {
struct link_training_settings req_settings;
union lane_status dpcd_lane_status[LANE_COUNT_DP_MAX];
union lane_align_status_updated
dpcd_lane_status_updated;
dp_get_lane_status_and_drive_settings(
link,
lt_settings,
dpcd_lane_status,
&dpcd_lane_status_updated,
&req_settings,
DPRX);
if (dpcd_lane_status_updated.bits.
POST_LT_ADJ_REQ_IN_PROGRESS == 0)
return true;
if (!dp_is_cr_done(lane_count, dpcd_lane_status))
return false;
if (!dp_is_ch_eq_done(lane_count, dpcd_lane_status) ||
!dp_is_symbol_locked(lane_count, dpcd_lane_status) ||
!dp_is_interlane_aligned(dpcd_lane_status_updated))
return false;
for (lane = 0; lane < (uint32_t)(lane_count); lane++) {
if (lt_settings->
lane_settings[lane].VOLTAGE_SWING !=
req_settings.lane_settings[lane].
VOLTAGE_SWING ||
lt_settings->lane_settings[lane].PRE_EMPHASIS !=
req_settings.lane_settings[lane].PRE_EMPHASIS) {
req_drv_setting_changed = true;
break;
}
}
if (req_drv_setting_changed) {
dp_update_drive_settings(
lt_settings, req_settings);
dc_link_dp_set_drive_settings(link,
lt_settings);
break;
}
msleep(1);
}
if (!req_drv_setting_changed) {
DC_LOG_WARNING("%s: Post Link Training Adjust Request Timed out\n",
__func__);
ASSERT(0);
return true;
}
}
DC_LOG_WARNING("%s: Post Link Training Adjust Request limit reached\n",
__func__);
ASSERT(0);
return true;
}
/* Only used for channel equalization */
uint32_t dp_translate_training_aux_read_interval(uint32_t dpcd_aux_read_interval)
{
unsigned int aux_rd_interval_us = 400;
switch (dpcd_aux_read_interval) {
case 0x01:
aux_rd_interval_us = 4000;
break;
case 0x02:
aux_rd_interval_us = 8000;
break;
case 0x03:
aux_rd_interval_us = 12000;
break;
case 0x04:
aux_rd_interval_us = 16000;
break;
default:
break;
}
return aux_rd_interval_us;
}
enum link_training_result dp_get_cr_failure(enum dc_lane_count ln_count,
union lane_status *dpcd_lane_status)
{
enum link_training_result result = LINK_TRAINING_SUCCESS;
if (ln_count >= LANE_COUNT_ONE && !dpcd_lane_status[0].bits.CR_DONE_0)
result = LINK_TRAINING_CR_FAIL_LANE0;
else if (ln_count >= LANE_COUNT_TWO && !dpcd_lane_status[1].bits.CR_DONE_0)
result = LINK_TRAINING_CR_FAIL_LANE1;
else if (ln_count >= LANE_COUNT_FOUR && !dpcd_lane_status[2].bits.CR_DONE_0)
result = LINK_TRAINING_CR_FAIL_LANE23;
else if (ln_count >= LANE_COUNT_FOUR && !dpcd_lane_status[3].bits.CR_DONE_0)
result = LINK_TRAINING_CR_FAIL_LANE23;
return result;
}
static enum link_training_result perform_channel_equalization_sequence(
struct dc_link *link,
struct link_training_settings *lt_settings,
uint32_t offset)
{
struct link_training_settings req_settings;
enum dc_dp_training_pattern tr_pattern;
uint32_t retries_ch_eq;
uint32_t wait_time_microsec;
enum dc_lane_count lane_count = lt_settings->link_settings.lane_count;
union lane_align_status_updated dpcd_lane_status_updated = { {0} };
union lane_status dpcd_lane_status[LANE_COUNT_DP_MAX] = { { {0} } };
/* Note: also check that TPS4 is a supported feature*/
tr_pattern = lt_settings->pattern_for_eq;
if (is_repeater(link, offset))
tr_pattern = DP_TRAINING_PATTERN_SEQUENCE_4;
dp_set_hw_training_pattern(link, tr_pattern, offset);
for (retries_ch_eq = 0; retries_ch_eq <= LINK_TRAINING_MAX_RETRY_COUNT;
retries_ch_eq++) {
dp_set_hw_lane_settings(link, lt_settings, offset);
/* 2. update DPCD*/
if (!retries_ch_eq)
/* EPR #361076 - write as a 5-byte burst,
* but only for the 1-st iteration
*/
dpcd_set_lt_pattern_and_lane_settings(
link,
lt_settings,
tr_pattern, offset);
else
dpcd_set_lane_settings(link, lt_settings, offset);
/* 3. wait for receiver to lock-on*/
wait_time_microsec = lt_settings->eq_pattern_time;
if (is_repeater(link, offset))
wait_time_microsec =
dp_translate_training_aux_read_interval(
link->dpcd_caps.lttpr_caps.aux_rd_interval[offset - 1]);
dp_wait_for_training_aux_rd_interval(
link,
wait_time_microsec);
/* 4. Read lane status and requested
* drive settings as set by the sink*/
dp_get_lane_status_and_drive_settings(
link,
lt_settings,
dpcd_lane_status,
&dpcd_lane_status_updated,
&req_settings,
offset);
/* 5. check CR done*/
if (!dp_is_cr_done(lane_count, dpcd_lane_status))
return LINK_TRAINING_EQ_FAIL_CR;
/* 6. check CHEQ done*/
if (dp_is_ch_eq_done(lane_count, dpcd_lane_status) &&
dp_is_symbol_locked(lane_count, dpcd_lane_status) &&
dp_is_interlane_aligned(dpcd_lane_status_updated))
return LINK_TRAINING_SUCCESS;
/* 7. update VS/PE/PC2 in lt_settings*/
dp_update_drive_settings(lt_settings, req_settings);
}
return LINK_TRAINING_EQ_FAIL_EQ;
}
static void start_clock_recovery_pattern_early(struct dc_link *link,
struct link_training_settings *lt_settings,
uint32_t offset)
{
DC_LOG_HW_LINK_TRAINING("%s\n GPU sends TPS1. Wait 400us.\n",
__func__);
dp_set_hw_training_pattern(link, lt_settings->pattern_for_cr, offset);
dp_set_hw_lane_settings(link, lt_settings, offset);
udelay(400);
}
static enum link_training_result perform_clock_recovery_sequence(
struct dc_link *link,
struct link_training_settings *lt_settings,
uint32_t offset)
{
uint32_t retries_cr;
uint32_t retry_count;
uint32_t wait_time_microsec;
struct link_training_settings req_settings;
enum dc_lane_count lane_count = lt_settings->link_settings.lane_count;
union lane_status dpcd_lane_status[LANE_COUNT_DP_MAX];
union lane_align_status_updated dpcd_lane_status_updated;
retries_cr = 0;
retry_count = 0;
if (!link->ctx->dc->work_arounds.lt_early_cr_pattern)
dp_set_hw_training_pattern(link, lt_settings->pattern_for_cr, offset);
/* najeeb - The synaptics MST hub can put the LT in
* infinite loop by switching the VS
*/
/* between level 0 and level 1 continuously, here
* we try for CR lock for LinkTrainingMaxCRRetry count*/
while ((retries_cr < LINK_TRAINING_MAX_RETRY_COUNT) &&
(retry_count < LINK_TRAINING_MAX_CR_RETRY)) {
memset(&dpcd_lane_status, '\0', sizeof(dpcd_lane_status));
memset(&dpcd_lane_status_updated, '\0',
sizeof(dpcd_lane_status_updated));
/* 1. call HWSS to set lane settings*/
dp_set_hw_lane_settings(
link,
lt_settings,
offset);
/* 2. update DPCD of the receiver*/
if (!retry_count)
/* EPR #361076 - write as a 5-byte burst,
* but only for the 1-st iteration.*/
dpcd_set_lt_pattern_and_lane_settings(
link,
lt_settings,
lt_settings->pattern_for_cr,
offset);
else
dpcd_set_lane_settings(
link,
lt_settings,
offset);
/* 3. wait receiver to lock-on*/
wait_time_microsec = lt_settings->cr_pattern_time;
if (link->lttpr_mode == LTTPR_MODE_NON_TRANSPARENT)
wait_time_microsec = TRAINING_AUX_RD_INTERVAL;
dp_wait_for_training_aux_rd_interval(
link,
wait_time_microsec);
/* 4. Read lane status and requested drive
* settings as set by the sink
*/
dp_get_lane_status_and_drive_settings(
link,
lt_settings,
dpcd_lane_status,
&dpcd_lane_status_updated,
&req_settings,
offset);
/* 5. check CR done*/
if (dp_is_cr_done(lane_count, dpcd_lane_status))
return LINK_TRAINING_SUCCESS;
/* 6. max VS reached*/
if (dp_is_max_vs_reached(lt_settings))
break;
/* 7. same lane settings*/
/* Note: settings are the same for all lanes,
* so comparing first lane is sufficient*/
if ((lt_settings->lane_settings[0].VOLTAGE_SWING ==
req_settings.lane_settings[0].VOLTAGE_SWING)
&& (lt_settings->lane_settings[0].PRE_EMPHASIS ==
req_settings.lane_settings[0].PRE_EMPHASIS))
retries_cr++;
else
retries_cr = 0;
/* 8. update VS/PE/PC2 in lt_settings*/
dp_update_drive_settings(lt_settings, req_settings);
retry_count++;
}
if (retry_count >= LINK_TRAINING_MAX_CR_RETRY) {
ASSERT(0);
DC_LOG_ERROR("%s: Link Training Error, could not get CR after %d tries. Possibly voltage swing issue",
__func__,
LINK_TRAINING_MAX_CR_RETRY);
}
return dp_get_cr_failure(lane_count, dpcd_lane_status);
}
static inline enum link_training_result dp_transition_to_video_idle(
struct dc_link *link,
struct link_training_settings *lt_settings,
enum link_training_result status)
{
union lane_count_set lane_count_set = { {0} };
/* 4. mainlink output idle pattern*/
dp_set_hw_test_pattern(link, DP_TEST_PATTERN_VIDEO_MODE, NULL, 0);
/*
* 5. post training adjust if required
* If the upstream DPTX and downstream DPRX both support TPS4,
* TPS4 must be used instead of POST_LT_ADJ_REQ.
*/
if (link->dpcd_caps.max_ln_count.bits.POST_LT_ADJ_REQ_SUPPORTED != 1 ||
lt_settings->pattern_for_eq == DP_TRAINING_PATTERN_SEQUENCE_4) {
/* delay 5ms after Main Link output idle pattern and then check
* DPCD 0202h.
*/
if (link->connector_signal != SIGNAL_TYPE_EDP && status == LINK_TRAINING_SUCCESS) {
msleep(5);
status = dp_check_link_loss_status(link, lt_settings);
}
return status;
}
if (status == LINK_TRAINING_SUCCESS &&
perform_post_lt_adj_req_sequence(link, lt_settings) == false)
status = LINK_TRAINING_LQA_FAIL;
lane_count_set.bits.LANE_COUNT_SET = lt_settings->link_settings.lane_count;
lane_count_set.bits.ENHANCED_FRAMING = lt_settings->enhanced_framing;
lane_count_set.bits.POST_LT_ADJ_REQ_GRANTED = 0;
core_link_write_dpcd(
link,
DP_LANE_COUNT_SET,
&lane_count_set.raw,
sizeof(lane_count_set));
return status;
}
enum link_training_result dp_check_link_loss_status(
struct dc_link *link,
const struct link_training_settings *link_training_setting)
{
enum link_training_result status = LINK_TRAINING_SUCCESS;
union lane_status lane_status;
uint8_t dpcd_buf[6] = {0};
uint32_t lane;
core_link_read_dpcd(
link,
DP_SINK_COUNT,
(uint8_t *)(dpcd_buf),
sizeof(dpcd_buf));
/*parse lane status*/
for (lane = 0; lane < link->cur_link_settings.lane_count; lane++) {
/*
* check lanes status
*/
lane_status.raw = get_nibble_at_index(&dpcd_buf[2], lane);
if (!lane_status.bits.CHANNEL_EQ_DONE_0 ||
!lane_status.bits.CR_DONE_0 ||
!lane_status.bits.SYMBOL_LOCKED_0) {
/* if one of the channel equalization, clock
* recovery or symbol lock is dropped
* consider it as (link has been
* dropped) dp sink status has changed
*/
status = LINK_TRAINING_LINK_LOSS;
break;
}
}
return status;
}
static inline void decide_8b_10b_training_settings(
struct dc_link *link,
const struct dc_link_settings *link_setting,
struct link_training_settings *lt_settings)
{
memset(lt_settings, '\0', sizeof(struct link_training_settings));
/* Initialize link settings */
lt_settings->link_settings.use_link_rate_set = link_setting->use_link_rate_set;
lt_settings->link_settings.link_rate_set = link_setting->link_rate_set;
lt_settings->link_settings.link_rate = link_setting->link_rate;
lt_settings->link_settings.lane_count = link_setting->lane_count;
/* TODO hard coded to SS for now
* lt_settings.link_settings.link_spread =
* dal_display_path_is_ss_supported(
* path_mode->display_path) ?
* LINK_SPREAD_05_DOWNSPREAD_30KHZ :
* LINK_SPREAD_DISABLED;
*/
lt_settings->link_settings.link_spread = link->dp_ss_off ?
LINK_SPREAD_DISABLED : LINK_SPREAD_05_DOWNSPREAD_30KHZ;
lt_settings->lttpr_mode = link->lttpr_mode;
lt_settings->cr_pattern_time = get_cr_training_aux_rd_interval(link, link_setting);
lt_settings->eq_pattern_time = get_eq_training_aux_rd_interval(link, link_setting);
lt_settings->pattern_for_cr = decide_cr_training_pattern(link_setting);
lt_settings->pattern_for_eq = decide_eq_training_pattern(link, link_setting);
lt_settings->enhanced_framing = 1;
lt_settings->should_set_fec_ready = true;
}
void dp_decide_training_settings(
struct dc_link *link,
const struct dc_link_settings *link_settings,
struct link_training_settings *lt_settings)
{
if (dp_get_link_encoding_format(link_settings) == DP_8b_10b_ENCODING)
decide_8b_10b_training_settings(link, link_settings, lt_settings);
}
static void override_training_settings(
struct dc_link *link,
const struct dc_link_training_overrides *overrides,
struct link_training_settings *lt_settings)
{
uint32_t lane;
/* Override link spread */
if (!link->dp_ss_off && overrides->downspread != NULL)
lt_settings->link_settings.link_spread = *overrides->downspread ?
LINK_SPREAD_05_DOWNSPREAD_30KHZ
: LINK_SPREAD_DISABLED;
/* Override lane settings */
if (overrides->voltage_swing != NULL)
lt_settings->voltage_swing = overrides->voltage_swing;
if (overrides->pre_emphasis != NULL)
lt_settings->pre_emphasis = overrides->pre_emphasis;
if (overrides->post_cursor2 != NULL)
lt_settings->post_cursor2 = overrides->post_cursor2;
for (lane = 0; lane < LANE_COUNT_DP_MAX; lane++) {
lt_settings->lane_settings[lane].VOLTAGE_SWING =
lt_settings->voltage_swing != NULL ?
*lt_settings->voltage_swing :
VOLTAGE_SWING_LEVEL0;
lt_settings->lane_settings[lane].PRE_EMPHASIS =
lt_settings->pre_emphasis != NULL ?
*lt_settings->pre_emphasis
: PRE_EMPHASIS_DISABLED;
lt_settings->lane_settings[lane].POST_CURSOR2 =
lt_settings->post_cursor2 != NULL ?
*lt_settings->post_cursor2
: POST_CURSOR2_DISABLED;
}
/* Initialize training timings */
if (overrides->cr_pattern_time != NULL)
lt_settings->cr_pattern_time = *overrides->cr_pattern_time;
if (overrides->eq_pattern_time != NULL)
lt_settings->eq_pattern_time = *overrides->eq_pattern_time;
if (overrides->pattern_for_cr != NULL)
lt_settings->pattern_for_cr = *overrides->pattern_for_cr;
if (overrides->pattern_for_eq != NULL)
lt_settings->pattern_for_eq = *overrides->pattern_for_eq;
if (overrides->enhanced_framing != NULL)
lt_settings->enhanced_framing = *overrides->enhanced_framing;
if (link->preferred_training_settings.fec_enable != NULL)
lt_settings->should_set_fec_ready = *link->preferred_training_settings.fec_enable;
}
uint8_t dp_convert_to_count(uint8_t lttpr_repeater_count)
{
switch (lttpr_repeater_count) {
case 0x80: // 1 lttpr repeater
return 1;
case 0x40: // 2 lttpr repeaters
return 2;
case 0x20: // 3 lttpr repeaters
return 3;
case 0x10: // 4 lttpr repeaters
return 4;
case 0x08: // 5 lttpr repeaters
return 5;
case 0x04: // 6 lttpr repeaters
return 6;
case 0x02: // 7 lttpr repeaters
return 7;
case 0x01: // 8 lttpr repeaters
return 8;
default:
break;
}
return 0; // invalid value
}
enum dc_status configure_lttpr_mode_transparent(struct dc_link *link)
{
uint8_t repeater_mode = DP_PHY_REPEATER_MODE_TRANSPARENT;
DC_LOG_HW_LINK_TRAINING("%s\n Set LTTPR to Transparent Mode\n", __func__);
return core_link_write_dpcd(link,
DP_PHY_REPEATER_MODE,
(uint8_t *)&repeater_mode,
sizeof(repeater_mode));
}
enum dc_status configure_lttpr_mode_non_transparent(
struct dc_link *link,
const struct link_training_settings *lt_settings)
{
/* aux timeout is already set to extended */
/* RESET/SET lttpr mode to enable non transparent mode */
uint8_t repeater_cnt;
uint32_t aux_interval_address;
uint8_t repeater_id;
enum dc_status result = DC_ERROR_UNEXPECTED;
uint8_t repeater_mode = DP_PHY_REPEATER_MODE_TRANSPARENT;
enum dp_link_encoding encoding = dp_get_link_encoding_format(&lt_settings->link_settings);
if (encoding == DP_8b_10b_ENCODING) {
DC_LOG_HW_LINK_TRAINING("%s\n Set LTTPR to Transparent Mode\n", __func__);
result = core_link_write_dpcd(link,
DP_PHY_REPEATER_MODE,
(uint8_t *)&repeater_mode,
sizeof(repeater_mode));
}
if (result == DC_OK) {
link->dpcd_caps.lttpr_caps.mode = repeater_mode;
}
if (link->lttpr_mode == LTTPR_MODE_NON_TRANSPARENT) {
DC_LOG_HW_LINK_TRAINING("%s\n Set LTTPR to Non Transparent Mode\n", __func__);
repeater_mode = DP_PHY_REPEATER_MODE_NON_TRANSPARENT;
result = core_link_write_dpcd(link,
DP_PHY_REPEATER_MODE,
(uint8_t *)&repeater_mode,
sizeof(repeater_mode));
if (result == DC_OK) {
link->dpcd_caps.lttpr_caps.mode = repeater_mode;
}
if (encoding == DP_8b_10b_ENCODING) {
repeater_cnt = dp_convert_to_count(link->dpcd_caps.lttpr_caps.phy_repeater_cnt);
for (repeater_id = repeater_cnt; repeater_id > 0; repeater_id--) {
aux_interval_address = DP_TRAINING_AUX_RD_INTERVAL_PHY_REPEATER1 +
((DP_REPEATER_CONFIGURATION_AND_STATUS_SIZE) * (repeater_id - 1));
core_link_read_dpcd(
link,
aux_interval_address,
(uint8_t *)&link->dpcd_caps.lttpr_caps.aux_rd_interval[repeater_id - 1],
sizeof(link->dpcd_caps.lttpr_caps.aux_rd_interval[repeater_id - 1]));
link->dpcd_caps.lttpr_caps.aux_rd_interval[repeater_id - 1] &= 0x7F;
}
}
}
return result;
}
static void repeater_training_done(struct dc_link *link, uint32_t offset)
{
union dpcd_training_pattern dpcd_pattern = { {0} };
const uint32_t dpcd_base_lt_offset =
DP_TRAINING_PATTERN_SET_PHY_REPEATER1 +
((DP_REPEATER_CONFIGURATION_AND_STATUS_SIZE) * (offset - 1));
/* Set training not in progress*/
dpcd_pattern.v1_4.TRAINING_PATTERN_SET = DPCD_TRAINING_PATTERN_VIDEOIDLE;
core_link_write_dpcd(
link,
dpcd_base_lt_offset,
&dpcd_pattern.raw,
1);
DC_LOG_HW_LINK_TRAINING("%s\n LTTPR Id: %d 0x%X pattern = %x\n",
__func__,
offset,
dpcd_base_lt_offset,
dpcd_pattern.v1_4.TRAINING_PATTERN_SET);
}
static void print_status_message(
struct dc_link *link,
const struct link_training_settings *lt_settings,
enum link_training_result status)
{
char *link_rate = "Unknown";
char *lt_result = "Unknown";
char *lt_spread = "Disabled";
switch (lt_settings->link_settings.link_rate) {
case LINK_RATE_LOW:
link_rate = "RBR";
break;
case LINK_RATE_RATE_2:
link_rate = "R2";
break;
case LINK_RATE_RATE_3:
link_rate = "R3";
break;
case LINK_RATE_HIGH:
link_rate = "HBR";
break;
case LINK_RATE_RBR2:
link_rate = "RBR2";
break;
case LINK_RATE_RATE_6:
link_rate = "R6";
break;
case LINK_RATE_HIGH2:
link_rate = "HBR2";
break;
case LINK_RATE_HIGH3:
link_rate = "HBR3";
break;
default:
break;
}
switch (status) {
case LINK_TRAINING_SUCCESS:
lt_result = "pass";
break;
case LINK_TRAINING_CR_FAIL_LANE0:
lt_result = "CR failed lane0";
break;
case LINK_TRAINING_CR_FAIL_LANE1:
lt_result = "CR failed lane1";
break;
case LINK_TRAINING_CR_FAIL_LANE23:
lt_result = "CR failed lane23";
break;
case LINK_TRAINING_EQ_FAIL_CR:
lt_result = "CR failed in EQ";
break;
case LINK_TRAINING_EQ_FAIL_EQ:
lt_result = "EQ failed";
break;
case LINK_TRAINING_LQA_FAIL:
lt_result = "LQA failed";
break;
case LINK_TRAINING_LINK_LOSS:
lt_result = "Link loss";
break;
default:
break;
}
switch (lt_settings->link_settings.link_spread) {
case LINK_SPREAD_DISABLED:
lt_spread = "Disabled";
break;
case LINK_SPREAD_05_DOWNSPREAD_30KHZ:
lt_spread = "0.5% 30KHz";
break;
case LINK_SPREAD_05_DOWNSPREAD_33KHZ:
lt_spread = "0.5% 33KHz";
break;
default:
break;
}
/* Connectivity log: link training */
CONN_MSG_LT(link, "%sx%d %s VS=%d, PE=%d, DS=%s",
link_rate,
lt_settings->link_settings.lane_count,
lt_result,
lt_settings->lane_settings[0].VOLTAGE_SWING,
lt_settings->lane_settings[0].PRE_EMPHASIS,
lt_spread);
}
void dc_link_dp_set_drive_settings(
struct dc_link *link,
struct link_training_settings *lt_settings)
{
/* program ASIC PHY settings*/
dp_set_hw_lane_settings(link, lt_settings, DPRX);
/* Notify DP sink the PHY settings from source */
dpcd_set_lane_settings(link, lt_settings, DPRX);
}
bool dc_link_dp_perform_link_training_skip_aux(
struct dc_link *link,
const struct dc_link_settings *link_setting)
{
struct link_training_settings lt_settings = {0};
dp_decide_training_settings(
link,
link_setting,
&lt_settings);
override_training_settings(
link,
&link->preferred_training_settings,
&lt_settings);
/* 1. Perform_clock_recovery_sequence. */
/* transmit training pattern for clock recovery */
dp_set_hw_training_pattern(link, lt_settings.pattern_for_cr, DPRX);
/* call HWSS to set lane settings*/
dp_set_hw_lane_settings(link, &lt_settings, DPRX);
/* wait receiver to lock-on*/
dp_wait_for_training_aux_rd_interval(link, lt_settings.cr_pattern_time);
/* 2. Perform_channel_equalization_sequence. */
/* transmit training pattern for channel equalization. */
dp_set_hw_training_pattern(link, lt_settings.pattern_for_eq, DPRX);
/* call HWSS to set lane settings*/
dp_set_hw_lane_settings(link, &lt_settings, DPRX);
/* wait receiver to lock-on. */
dp_wait_for_training_aux_rd_interval(link, lt_settings.eq_pattern_time);
/* 3. Perform_link_training_int. */
/* Mainlink output idle pattern. */
dp_set_hw_test_pattern(link, DP_TEST_PATTERN_VIDEO_MODE, NULL, 0);
print_status_message(link, &lt_settings, LINK_TRAINING_SUCCESS);
return true;
}
enum dc_status dpcd_configure_lttpr_mode(struct dc_link *link, struct link_training_settings *lt_settings)
{
enum dc_status status = DC_OK;
if (lt_settings->lttpr_mode == LTTPR_MODE_TRANSPARENT)
status = configure_lttpr_mode_transparent(link);
else if (lt_settings->lttpr_mode == LTTPR_MODE_NON_TRANSPARENT)
status = configure_lttpr_mode_non_transparent(link, lt_settings);
return status;
}
static void dpcd_exit_training_mode(struct dc_link *link)
{
/* clear training pattern set */
dpcd_set_training_pattern(link, DP_TRAINING_PATTERN_VIDEOIDLE);
}
enum dc_status dpcd_configure_channel_coding(struct dc_link *link,
struct link_training_settings *lt_settings)
{
enum dp_link_encoding encoding =
dp_get_link_encoding_format(
&lt_settings->link_settings);
enum dc_status status;
status = core_link_write_dpcd(
link,
DP_MAIN_LINK_CHANNEL_CODING_SET,
(uint8_t *) &encoding,
1);
DC_LOG_HW_LINK_TRAINING("%s:\n 0x%X MAIN_LINK_CHANNEL_CODING_SET = %x\n",
__func__,
DP_MAIN_LINK_CHANNEL_CODING_SET,
encoding);
return status;
}
static enum link_training_result dp_perform_8b_10b_link_training(
struct dc_link *link,
struct link_training_settings *lt_settings)
{
enum link_training_result status = LINK_TRAINING_SUCCESS;
uint8_t repeater_cnt;
uint8_t repeater_id;
uint8_t lane = 0;
if (link->ctx->dc->work_arounds.lt_early_cr_pattern)
start_clock_recovery_pattern_early(link, lt_settings, DPRX);
/* 1. set link rate, lane count and spread. */
dpcd_set_link_settings(link, lt_settings);
if (link->lttpr_mode == LTTPR_MODE_NON_TRANSPARENT) {
/* 2. perform link training (set link training done
* to false is done as well)
*/
repeater_cnt = dp_convert_to_count(link->dpcd_caps.lttpr_caps.phy_repeater_cnt);
for (repeater_id = repeater_cnt; (repeater_id > 0 && status == LINK_TRAINING_SUCCESS);
repeater_id--) {
status = perform_clock_recovery_sequence(link, lt_settings, repeater_id);
if (status != LINK_TRAINING_SUCCESS)
break;
status = perform_channel_equalization_sequence(link,
lt_settings,
repeater_id);
if (status != LINK_TRAINING_SUCCESS)
break;
repeater_training_done(link, repeater_id);
}
for (lane = 0; lane < (uint8_t)lt_settings->link_settings.lane_count; lane++)
lt_settings->lane_settings[lane].VOLTAGE_SWING = VOLTAGE_SWING_LEVEL0;
}
if (status == LINK_TRAINING_SUCCESS) {
status = perform_clock_recovery_sequence(link, lt_settings, DPRX);
if (status == LINK_TRAINING_SUCCESS) {
status = perform_channel_equalization_sequence(link,
lt_settings,
DPRX);
}
}
return status;
}
enum link_training_result dc_link_dp_perform_link_training(
struct dc_link *link,
const struct dc_link_settings *link_settings,
bool skip_video_pattern)
{
enum link_training_result status = LINK_TRAINING_SUCCESS;
struct link_training_settings lt_settings = {0};
enum dp_link_encoding encoding =
dp_get_link_encoding_format(link_settings);
/* decide training settings */
dp_decide_training_settings(
link,
link_settings,
&lt_settings);
override_training_settings(
link,
&link->preferred_training_settings,
&lt_settings);
/* reset previous training states */
dpcd_exit_training_mode(link);
/* configure link prior to entering training mode */
dpcd_configure_lttpr_mode(link, &lt_settings);
dp_set_fec_ready(link, lt_settings.should_set_fec_ready);
dpcd_configure_channel_coding(link, &lt_settings);
/* enter training mode:
* Per DP specs starting from here, DPTX device shall not issue
* Non-LT AUX transactions inside training mode.
*/
if (encoding == DP_8b_10b_ENCODING)
status = dp_perform_8b_10b_link_training(link, &lt_settings);
else
ASSERT(0);
/* exit training mode and switch to video idle */
dpcd_exit_training_mode(link);
if ((status == LINK_TRAINING_SUCCESS) || !skip_video_pattern)
status = dp_transition_to_video_idle(link,
&lt_settings,
status);
/* dump debug data */
print_status_message(link, &lt_settings, status);
if (status != LINK_TRAINING_SUCCESS)
link->ctx->dc->debug_data.ltFailCount++;
return status;
}
bool perform_link_training_with_retries(
const struct dc_link_settings *link_setting,
bool skip_video_pattern,
int attempts,
struct pipe_ctx *pipe_ctx,
enum signal_type signal,
bool do_fallback)
{
int j;
uint8_t delay_between_attempts = LINK_TRAINING_RETRY_DELAY;
struct dc_stream_state *stream = pipe_ctx->stream;
struct dc_link *link = stream->link;
enum dp_panel_mode panel_mode = dp_get_panel_mode(link);
struct link_encoder *link_enc;
enum link_training_result status = LINK_TRAINING_CR_FAIL_LANE0;
struct dc_link_settings current_setting = *link_setting;
/* Dynamically assigned link encoders associated with stream rather than
* link.
*/
if (link->dc->res_pool->funcs->link_encs_assign)
link_enc = stream->link_enc;
else
link_enc = link->link_enc;
/* We need to do this before the link training to ensure the idle pattern in SST
* mode will be sent right after the link training
*/
link_enc->funcs->connect_dig_be_to_fe(link_enc,
pipe_ctx->stream_res.stream_enc->id, true);
for (j = 0; j < attempts; ++j) {
DC_LOG_HW_LINK_TRAINING("%s: Beginning link training attempt %u of %d\n",
__func__, (unsigned int)j + 1, attempts);
dp_enable_link_phy(
link,
signal,
pipe_ctx->clock_source->id,
&current_setting);
if (stream->sink_patches.dppowerup_delay > 0) {
int delay_dp_power_up_in_ms = stream->sink_patches.dppowerup_delay;
msleep(delay_dp_power_up_in_ms);
}
#ifdef CONFIG_DRM_AMD_DC_HDCP
if (panel_mode == DP_PANEL_MODE_EDP) {
struct cp_psp *cp_psp = &stream->ctx->cp_psp;
if (cp_psp && cp_psp->funcs.enable_assr)
/* ASSR is bound to fail with unsigned PSP
* verstage used during devlopment phase.
* Report and continue with eDP panel mode to
* perform eDP link training with right settings
*/
cp_psp->funcs.enable_assr(cp_psp->handle, link);
}
#endif
dp_set_panel_mode(link, panel_mode);
if (link->aux_access_disabled) {
dc_link_dp_perform_link_training_skip_aux(link, &current_setting);
return true;
} else {
status = dc_link_dp_perform_link_training(
link,
&current_setting,
skip_video_pattern);
if (status == LINK_TRAINING_SUCCESS)
return true;
}
/* latest link training still fail, skip delay and keep PHY on
*/
if (j == (attempts - 1) && link->ep_type == DISPLAY_ENDPOINT_PHY)
break;
DC_LOG_WARNING("%s: Link training attempt %u of %d failed\n",
__func__, (unsigned int)j + 1, attempts);
dp_disable_link_phy(link, signal);
/* Abort link training if failure due to sink being unplugged. */
if (status == LINK_TRAINING_ABORT) {
enum dc_connection_type type = dc_connection_none;
dc_link_detect_sink(link, &type);
if (type == dc_connection_none)
break;
} else if (do_fallback) {
decide_fallback_link_setting(*link_setting, &current_setting, status);
/* Fail link training if reduced link bandwidth no longer meets
* stream requirements.
*/
if (dc_bandwidth_in_kbps_from_timing(&stream->timing) <
dc_link_bandwidth_kbps(link, &current_setting))
break;
}
msleep(delay_between_attempts);
delay_between_attempts += LINK_TRAINING_RETRY_DELAY;
}
return false;
}
static enum clock_source_id get_clock_source_id(struct dc_link *link)
{
enum clock_source_id dp_cs_id = CLOCK_SOURCE_ID_UNDEFINED;
struct clock_source *dp_cs = link->dc->res_pool->dp_clock_source;
if (dp_cs != NULL) {
dp_cs_id = dp_cs->id;
} else {
/*
* dp clock source is not initialized for some reason.
* Should not happen, CLOCK_SOURCE_ID_EXTERNAL will be used
*/
ASSERT(dp_cs);
}
return dp_cs_id;
}
static void set_dp_mst_mode(struct dc_link *link, bool mst_enable)
{
if (mst_enable == false &&
link->type == dc_connection_mst_branch) {
/* Disable MST on link. Use only local sink. */
dp_disable_link_phy_mst(link, link->connector_signal);
link->type = dc_connection_single;
link->local_sink = link->remote_sinks[0];
link->local_sink->sink_signal = SIGNAL_TYPE_DISPLAY_PORT;
dc_sink_retain(link->local_sink);
dm_helpers_dp_mst_stop_top_mgr(link->ctx, link);
} else if (mst_enable == true &&
link->type == dc_connection_single &&
link->remote_sinks[0] != NULL) {
/* Re-enable MST on link. */
dp_disable_link_phy(link, link->connector_signal);
dp_enable_mst_on_sink(link, true);
link->type = dc_connection_mst_branch;
link->local_sink->sink_signal = SIGNAL_TYPE_DISPLAY_PORT_MST;
}
}
bool dc_link_dp_sync_lt_begin(struct dc_link *link)
{
/* Begin Sync LT. During this time,
* DPCD:600h must not be powered down.
*/
link->sync_lt_in_progress = true;
/*Clear any existing preferred settings.*/
memset(&link->preferred_training_settings, 0,
sizeof(struct dc_link_training_overrides));
memset(&link->preferred_link_setting, 0,
sizeof(struct dc_link_settings));
return true;
}
enum link_training_result dc_link_dp_sync_lt_attempt(
struct dc_link *link,
struct dc_link_settings *link_settings,
struct dc_link_training_overrides *lt_overrides)
{
struct link_training_settings lt_settings = {0};
enum link_training_result lt_status = LINK_TRAINING_SUCCESS;
enum dp_panel_mode panel_mode = DP_PANEL_MODE_DEFAULT;
enum clock_source_id dp_cs_id = CLOCK_SOURCE_ID_EXTERNAL;
bool fec_enable = false;
dp_decide_training_settings(
link,
link_settings,
&lt_settings);
override_training_settings(
link,
lt_overrides,
&lt_settings);
/* Setup MST Mode */
if (lt_overrides->mst_enable)
set_dp_mst_mode(link, *lt_overrides->mst_enable);
/* Disable link */
dp_disable_link_phy(link, link->connector_signal);
/* Enable link */
dp_cs_id = get_clock_source_id(link);
dp_enable_link_phy(link, link->connector_signal,
dp_cs_id, link_settings);
/* Set FEC enable */
fec_enable = lt_overrides->fec_enable && *lt_overrides->fec_enable;
dp_set_fec_ready(link, fec_enable);
if (lt_overrides->alternate_scrambler_reset) {
if (*lt_overrides->alternate_scrambler_reset)
panel_mode = DP_PANEL_MODE_EDP;
else
panel_mode = DP_PANEL_MODE_DEFAULT;
} else
panel_mode = dp_get_panel_mode(link);
dp_set_panel_mode(link, panel_mode);
/* Attempt to train with given link training settings */
if (link->ctx->dc->work_arounds.lt_early_cr_pattern)
start_clock_recovery_pattern_early(link, &lt_settings, DPRX);
/* Set link rate, lane count and spread. */
dpcd_set_link_settings(link, &lt_settings);
/* 2. perform link training (set link training done
* to false is done as well)
*/
lt_status = perform_clock_recovery_sequence(link, &lt_settings, DPRX);
if (lt_status == LINK_TRAINING_SUCCESS) {
lt_status = perform_channel_equalization_sequence(link,
&lt_settings,
DPRX);
}
/* 3. Sync LT must skip TRAINING_PATTERN_SET:0 (video pattern)*/
/* 4. print status message*/
print_status_message(link, &lt_settings, lt_status);
return lt_status;
}
bool dc_link_dp_sync_lt_end(struct dc_link *link, bool link_down)
{
/* If input parameter is set, shut down phy.
* Still shouldn't turn off dp_receiver (DPCD:600h)
*/
if (link_down == true) {
dp_disable_link_phy(link, link->connector_signal);
dp_set_fec_ready(link, false);
}
link->sync_lt_in_progress = false;
return true;
}
bool dc_link_dp_get_max_link_enc_cap(const struct dc_link *link, struct dc_link_settings *max_link_enc_cap)
{
if (!max_link_enc_cap) {
DC_LOG_ERROR("%s: Could not return max link encoder caps", __func__);
return false;
}
if (link->link_enc->funcs->get_max_link_cap) {
link->link_enc->funcs->get_max_link_cap(link->link_enc, max_link_enc_cap);
return true;
}
DC_LOG_ERROR("%s: Max link encoder caps unknown", __func__);
max_link_enc_cap->lane_count = 1;
max_link_enc_cap->link_rate = 6;
return false;
}
static struct dc_link_settings get_max_link_cap(struct dc_link *link)
{
struct dc_link_settings max_link_cap = {0};
/* get max link encoder capability */
link->link_enc->funcs->get_max_link_cap(link->link_enc, &max_link_cap);
/* Lower link settings based on sink's link cap */
if (link->reported_link_cap.lane_count < max_link_cap.lane_count)
max_link_cap.lane_count =
link->reported_link_cap.lane_count;
if (link->reported_link_cap.link_rate < max_link_cap.link_rate)
max_link_cap.link_rate =
link->reported_link_cap.link_rate;
if (link->reported_link_cap.link_spread <
max_link_cap.link_spread)
max_link_cap.link_spread =
link->reported_link_cap.link_spread;
/*
* account for lttpr repeaters cap
* notes: repeaters do not snoop in the DPRX Capabilities addresses (3.6.3).
*/
if (link->lttpr_mode == LTTPR_MODE_NON_TRANSPARENT) {
if (link->dpcd_caps.lttpr_caps.max_lane_count < max_link_cap.lane_count)
max_link_cap.lane_count = link->dpcd_caps.lttpr_caps.max_lane_count;
if (link->dpcd_caps.lttpr_caps.max_link_rate < max_link_cap.link_rate)
max_link_cap.link_rate = link->dpcd_caps.lttpr_caps.max_link_rate;
DC_LOG_HW_LINK_TRAINING("%s\n Training with LTTPR, max_lane count %d max_link rate %d \n",
__func__,
max_link_cap.lane_count,
max_link_cap.link_rate);
}
return max_link_cap;
}
enum dc_status read_hpd_rx_irq_data(
struct dc_link *link,
union hpd_irq_data *irq_data)
{
static enum dc_status retval;
/* The HW reads 16 bytes from 200h on HPD,
* but if we get an AUX_DEFER, the HW cannot retry
* and this causes the CTS tests 4.3.2.1 - 3.2.4 to
* fail, so we now explicitly read 6 bytes which is
* the req from the above mentioned test cases.
*
* For DP 1.4 we need to read those from 2002h range.
*/
if (link->dpcd_caps.dpcd_rev.raw < DPCD_REV_14)
retval = core_link_read_dpcd(
link,
DP_SINK_COUNT,
irq_data->raw,
sizeof(union hpd_irq_data));
else {
/* Read 14 bytes in a single read and then copy only the required fields.
* This is more efficient than doing it in two separate AUX reads. */
uint8_t tmp[DP_SINK_STATUS_ESI - DP_SINK_COUNT_ESI + 1];
retval = core_link_read_dpcd(
link,
DP_SINK_COUNT_ESI,
tmp,
sizeof(tmp));
if (retval != DC_OK)
return retval;
irq_data->bytes.sink_cnt.raw = tmp[DP_SINK_COUNT_ESI - DP_SINK_COUNT_ESI];
irq_data->bytes.device_service_irq.raw = tmp[DP_DEVICE_SERVICE_IRQ_VECTOR_ESI0 - DP_SINK_COUNT_ESI];
irq_data->bytes.lane01_status.raw = tmp[DP_LANE0_1_STATUS_ESI - DP_SINK_COUNT_ESI];
irq_data->bytes.lane23_status.raw = tmp[DP_LANE2_3_STATUS_ESI - DP_SINK_COUNT_ESI];
irq_data->bytes.lane_status_updated.raw = tmp[DP_LANE_ALIGN_STATUS_UPDATED_ESI - DP_SINK_COUNT_ESI];
irq_data->bytes.sink_status.raw = tmp[DP_SINK_STATUS_ESI - DP_SINK_COUNT_ESI];
}
return retval;
}
bool hpd_rx_irq_check_link_loss_status(
struct dc_link *link,
union hpd_irq_data *hpd_irq_dpcd_data)
{
uint8_t irq_reg_rx_power_state = 0;
enum dc_status dpcd_result = DC_ERROR_UNEXPECTED;
union lane_status lane_status;
uint32_t lane;
bool sink_status_changed;
bool return_code;
sink_status_changed = false;
return_code = false;
if (link->cur_link_settings.lane_count == 0)
return return_code;
/*1. Check that Link Status changed, before re-training.*/
/*parse lane status*/
for (lane = 0; lane < link->cur_link_settings.lane_count; lane++) {
/* check status of lanes 0,1
* changed DpcdAddress_Lane01Status (0x202)
*/
lane_status.raw = get_nibble_at_index(
&hpd_irq_dpcd_data->bytes.lane01_status.raw,
lane);
if (!lane_status.bits.CHANNEL_EQ_DONE_0 ||
!lane_status.bits.CR_DONE_0 ||
!lane_status.bits.SYMBOL_LOCKED_0) {
/* if one of the channel equalization, clock
* recovery or symbol lock is dropped
* consider it as (link has been
* dropped) dp sink status has changed
*/
sink_status_changed = true;
break;
}
}
/* Check interlane align.*/
if (sink_status_changed ||
!hpd_irq_dpcd_data->bytes.lane_status_updated.bits.INTERLANE_ALIGN_DONE) {
DC_LOG_HW_HPD_IRQ("%s: Link Status changed.\n", __func__);
return_code = true;
/*2. Check that we can handle interrupt: Not in FS DOS,
* Not in "Display Timeout" state, Link is trained.
*/
dpcd_result = core_link_read_dpcd(link,
DP_SET_POWER,
&irq_reg_rx_power_state,
sizeof(irq_reg_rx_power_state));
if (dpcd_result != DC_OK) {
DC_LOG_HW_HPD_IRQ("%s: DPCD read failed to obtain power state.\n",
__func__);
} else {
if (irq_reg_rx_power_state != DP_SET_POWER_D0)
return_code = false;
}
}
return return_code;
}
bool dp_verify_link_cap(
struct dc_link *link,
struct dc_link_settings *known_limit_link_setting,
int *fail_count)
{
struct dc_link_settings max_link_cap = {0};
struct dc_link_settings cur_link_setting = {0};
struct dc_link_settings *cur = &cur_link_setting;
struct dc_link_settings initial_link_settings = {0};
bool success;
bool skip_link_training;
bool skip_video_pattern;
enum clock_source_id dp_cs_id = CLOCK_SOURCE_ID_EXTERNAL;
enum link_training_result status;
union hpd_irq_data irq_data;
if (link->dc->debug.skip_detection_link_training) {
link->verified_link_cap = *known_limit_link_setting;
return true;
}
memset(&irq_data, 0, sizeof(irq_data));
success = false;
skip_link_training = false;
max_link_cap = get_max_link_cap(link);
/* Grant extended timeout request */
if ((link->lttpr_mode == LTTPR_MODE_NON_TRANSPARENT) && (link->dpcd_caps.lttpr_caps.max_ext_timeout > 0)) {
uint8_t grant = link->dpcd_caps.lttpr_caps.max_ext_timeout & 0x80;
core_link_write_dpcd(link, DP_PHY_REPEATER_EXTENDED_WAIT_TIMEOUT, &grant, sizeof(grant));
}
/* TODO implement override and monitor patch later */
/* try to train the link from high to low to
* find the physical link capability
*/
/* disable PHY done possible by BIOS, will be done by driver itself */
dp_disable_link_phy(link, link->connector_signal);
dp_cs_id = get_clock_source_id(link);
/* link training starts with the maximum common settings
* supported by both sink and ASIC.
*/
initial_link_settings = get_common_supported_link_settings(
*known_limit_link_setting,
max_link_cap);
cur_link_setting = initial_link_settings;
/* Temporary Renoir-specific workaround for SWDEV-215184;
* PHY will sometimes be in bad state on hotplugging display from certain USB-C dongle,
* so add extra cycle of enabling and disabling the PHY before first link training.
*/
if (link->link_enc->features.flags.bits.DP_IS_USB_C &&
link->dc->debug.usbc_combo_phy_reset_wa) {
dp_enable_link_phy(link, link->connector_signal, dp_cs_id, cur);
dp_disable_link_phy(link, link->connector_signal);
}
do {
skip_video_pattern = true;
if (cur->link_rate == LINK_RATE_LOW)
skip_video_pattern = false;
dp_enable_link_phy(
link,
link->connector_signal,
dp_cs_id,
cur);
if (skip_link_training)
success = true;
else {
status = dc_link_dp_perform_link_training(
link,
cur,
skip_video_pattern);
if (status == LINK_TRAINING_SUCCESS)
success = true;
else
(*fail_count)++;
}
if (success) {
link->verified_link_cap = *cur;
udelay(1000);
if (read_hpd_rx_irq_data(link, &irq_data) == DC_OK)
if (hpd_rx_irq_check_link_loss_status(
link,
&irq_data))
(*fail_count)++;
}
/* always disable the link before trying another
* setting or before returning we'll enable it later
* based on the actual mode we're driving
*/
dp_disable_link_phy(link, link->connector_signal);
} while (!success && decide_fallback_link_setting(
initial_link_settings, cur, status));
/* Link Training failed for all Link Settings
* (Lane Count is still unknown)
*/
if (!success) {
/* If all LT fails for all settings,
* set verified = failed safe (1 lane low)
*/
link->verified_link_cap.lane_count = LANE_COUNT_ONE;
link->verified_link_cap.link_rate = LINK_RATE_LOW;
link->verified_link_cap.link_spread =
LINK_SPREAD_DISABLED;
}
return success;
}
bool dp_verify_link_cap_with_retries(
struct dc_link *link,
struct dc_link_settings *known_limit_link_setting,
int attempts)
{
int i = 0;
bool success = false;
for (i = 0; i < attempts; i++) {
int fail_count = 0;
enum dc_connection_type type = dc_connection_none;
memset(&link->verified_link_cap, 0,
sizeof(struct dc_link_settings));
if (!dc_link_detect_sink(link, &type) || type == dc_connection_none) {
link->verified_link_cap.lane_count = LANE_COUNT_ONE;
link->verified_link_cap.link_rate = LINK_RATE_LOW;
link->verified_link_cap.link_spread = LINK_SPREAD_DISABLED;
break;
} else if (dp_verify_link_cap(link,
&link->reported_link_cap,
&fail_count) && fail_count == 0) {
success = true;
break;
}
msleep(10);
}
return success;
}
bool dp_verify_mst_link_cap(
struct dc_link *link)
{
struct dc_link_settings max_link_cap = {0};
max_link_cap = get_max_link_cap(link);
link->verified_link_cap = get_common_supported_link_settings(
link->reported_link_cap,
max_link_cap);
return true;
}
static struct dc_link_settings get_common_supported_link_settings(
struct dc_link_settings link_setting_a,
struct dc_link_settings link_setting_b)
{
struct dc_link_settings link_settings = {0};
link_settings.lane_count =
(link_setting_a.lane_count <=
link_setting_b.lane_count) ?
link_setting_a.lane_count :
link_setting_b.lane_count;
link_settings.link_rate =
(link_setting_a.link_rate <=
link_setting_b.link_rate) ?
link_setting_a.link_rate :
link_setting_b.link_rate;
link_settings.link_spread = LINK_SPREAD_DISABLED;
/* in DP compliance test, DPR-120 may have
* a random value in its MAX_LINK_BW dpcd field.
* We map it to the maximum supported link rate that
* is smaller than MAX_LINK_BW in this case.
*/
if (link_settings.link_rate > LINK_RATE_HIGH3) {
link_settings.link_rate = LINK_RATE_HIGH3;
} else if (link_settings.link_rate < LINK_RATE_HIGH3
&& link_settings.link_rate > LINK_RATE_HIGH2) {
link_settings.link_rate = LINK_RATE_HIGH2;
} else if (link_settings.link_rate < LINK_RATE_HIGH2
&& link_settings.link_rate > LINK_RATE_HIGH) {
link_settings.link_rate = LINK_RATE_HIGH;
} else if (link_settings.link_rate < LINK_RATE_HIGH
&& link_settings.link_rate > LINK_RATE_LOW) {
link_settings.link_rate = LINK_RATE_LOW;
} else if (link_settings.link_rate < LINK_RATE_LOW) {
link_settings.link_rate = LINK_RATE_UNKNOWN;
}
return link_settings;
}
static inline bool reached_minimum_lane_count(enum dc_lane_count lane_count)
{
return lane_count <= LANE_COUNT_ONE;
}
static inline bool reached_minimum_link_rate(enum dc_link_rate link_rate)
{
return link_rate <= LINK_RATE_LOW;
}
static enum dc_lane_count reduce_lane_count(enum dc_lane_count lane_count)
{
switch (lane_count) {
case LANE_COUNT_FOUR:
return LANE_COUNT_TWO;
case LANE_COUNT_TWO:
return LANE_COUNT_ONE;
case LANE_COUNT_ONE:
return LANE_COUNT_UNKNOWN;
default:
return LANE_COUNT_UNKNOWN;
}
}
static enum dc_link_rate reduce_link_rate(enum dc_link_rate link_rate)
{
switch (link_rate) {
case LINK_RATE_HIGH3:
return LINK_RATE_HIGH2;
case LINK_RATE_HIGH2:
return LINK_RATE_HIGH;
case LINK_RATE_HIGH:
return LINK_RATE_LOW;
case LINK_RATE_LOW:
return LINK_RATE_UNKNOWN;
default:
return LINK_RATE_UNKNOWN;
}
}
static enum dc_lane_count increase_lane_count(enum dc_lane_count lane_count)
{
switch (lane_count) {
case LANE_COUNT_ONE:
return LANE_COUNT_TWO;
case LANE_COUNT_TWO:
return LANE_COUNT_FOUR;
default:
return LANE_COUNT_UNKNOWN;
}
}
static enum dc_link_rate increase_link_rate(enum dc_link_rate link_rate)
{
switch (link_rate) {
case LINK_RATE_LOW:
return LINK_RATE_HIGH;
case LINK_RATE_HIGH:
return LINK_RATE_HIGH2;
case LINK_RATE_HIGH2:
return LINK_RATE_HIGH3;
default:
return LINK_RATE_UNKNOWN;
}
}
/*
* function: set link rate and lane count fallback based
* on current link setting and last link training result
* return value:
* true - link setting could be set
* false - has reached minimum setting
* and no further fallback could be done
*/
static bool decide_fallback_link_setting(
struct dc_link_settings initial_link_settings,
struct dc_link_settings *current_link_setting,
enum link_training_result training_result)
{
if (!current_link_setting)
return false;
switch (training_result) {
case LINK_TRAINING_CR_FAIL_LANE0:
case LINK_TRAINING_CR_FAIL_LANE1:
case LINK_TRAINING_CR_FAIL_LANE23:
case LINK_TRAINING_LQA_FAIL:
{
if (!reached_minimum_link_rate
(current_link_setting->link_rate)) {
current_link_setting->link_rate =
reduce_link_rate(
current_link_setting->link_rate);
} else if (!reached_minimum_lane_count
(current_link_setting->lane_count)) {
current_link_setting->link_rate =
initial_link_settings.link_rate;
if (training_result == LINK_TRAINING_CR_FAIL_LANE0)
return false;
else if (training_result == LINK_TRAINING_CR_FAIL_LANE1)
current_link_setting->lane_count =
LANE_COUNT_ONE;
else if (training_result ==
LINK_TRAINING_CR_FAIL_LANE23)
current_link_setting->lane_count =
LANE_COUNT_TWO;
else
current_link_setting->lane_count =
reduce_lane_count(
current_link_setting->lane_count);
} else {
return false;
}
break;
}
case LINK_TRAINING_EQ_FAIL_EQ:
{
if (!reached_minimum_lane_count
(current_link_setting->lane_count)) {
current_link_setting->lane_count =
reduce_lane_count(
current_link_setting->lane_count);
} else if (!reached_minimum_link_rate
(current_link_setting->link_rate)) {
current_link_setting->link_rate =
reduce_link_rate(
current_link_setting->link_rate);
} else {
return false;
}
break;
}
case LINK_TRAINING_EQ_FAIL_CR:
{
if (!reached_minimum_link_rate
(current_link_setting->link_rate)) {
current_link_setting->link_rate =
reduce_link_rate(
current_link_setting->link_rate);
} else {
return false;
}
break;
}
default:
return false;
}
return true;
}
bool dp_validate_mode_timing(
struct dc_link *link,
const struct dc_crtc_timing *timing)
{
uint32_t req_bw;
uint32_t max_bw;
const struct dc_link_settings *link_setting;
/* According to spec, VSC SDP should be used if pixel format is YCbCr420 */
if (timing->pixel_encoding == PIXEL_ENCODING_YCBCR420 &&
!link->dpcd_caps.dprx_feature.bits.VSC_SDP_COLORIMETRY_SUPPORTED &&
dal_graphics_object_id_get_connector_id(link->link_id) != CONNECTOR_ID_VIRTUAL)
return false;
/*always DP fail safe mode*/
if ((timing->pix_clk_100hz / 10) == (uint32_t) 25175 &&
timing->h_addressable == (uint32_t) 640 &&
timing->v_addressable == (uint32_t) 480)
return true;
link_setting = dc_link_get_link_cap(link);
/* TODO: DYNAMIC_VALIDATION needs to be implemented */
/*if (flags.DYNAMIC_VALIDATION == 1 &&
link->verified_link_cap.lane_count != LANE_COUNT_UNKNOWN)
link_setting = &link->verified_link_cap;
*/
req_bw = dc_bandwidth_in_kbps_from_timing(timing);
max_bw = dc_link_bandwidth_kbps(link, link_setting);
if (req_bw <= max_bw) {
/* remember the biggest mode here, during
* initial link training (to get
* verified_link_cap), LS sends event about
* cannot train at reported cap to upper
* layer and upper layer will re-enumerate modes.
* this is not necessary if the lower
* verified_link_cap is enough to drive
* all the modes */
/* TODO: DYNAMIC_VALIDATION needs to be implemented */
/* if (flags.DYNAMIC_VALIDATION == 1)
dpsst->max_req_bw_for_verified_linkcap = dal_max(
dpsst->max_req_bw_for_verified_linkcap, req_bw); */
return true;
} else
return false;
}
static bool decide_dp_link_settings(struct dc_link *link, struct dc_link_settings *link_setting, uint32_t req_bw)
{
struct dc_link_settings initial_link_setting = {
LANE_COUNT_ONE, LINK_RATE_LOW, LINK_SPREAD_DISABLED, false, 0};
struct dc_link_settings current_link_setting =
initial_link_setting;
uint32_t link_bw;
if (req_bw > dc_link_bandwidth_kbps(link, &link->verified_link_cap))
return false;
/* search for the minimum link setting that:
* 1. is supported according to the link training result
* 2. could support the b/w requested by the timing
*/
while (current_link_setting.link_rate <=
link->verified_link_cap.link_rate) {
link_bw = dc_link_bandwidth_kbps(
link,
&current_link_setting);
if (req_bw <= link_bw) {
*link_setting = current_link_setting;
return true;
}
if (current_link_setting.lane_count <
link->verified_link_cap.lane_count) {
current_link_setting.lane_count =
increase_lane_count(
current_link_setting.lane_count);
} else {
current_link_setting.link_rate =
increase_link_rate(
current_link_setting.link_rate);
current_link_setting.lane_count =
initial_link_setting.lane_count;
}
}
return false;
}
bool decide_edp_link_settings(struct dc_link *link, struct dc_link_settings *link_setting, uint32_t req_bw)
{
struct dc_link_settings initial_link_setting;
struct dc_link_settings current_link_setting;
uint32_t link_bw;
/*
* edp_supported_link_rates_count is only valid for eDP v1.4 or higher.
* Per VESA eDP spec, "The DPCD revision for eDP v1.4 is 13h"
*/
if (link->dpcd_caps.dpcd_rev.raw < DPCD_REV_13 ||
link->dpcd_caps.edp_supported_link_rates_count == 0) {
*link_setting = link->verified_link_cap;
return true;
}
memset(&initial_link_setting, 0, sizeof(initial_link_setting));
initial_link_setting.lane_count = LANE_COUNT_ONE;
initial_link_setting.link_rate = link->dpcd_caps.edp_supported_link_rates[0];
initial_link_setting.link_spread = LINK_SPREAD_DISABLED;
initial_link_setting.use_link_rate_set = true;
initial_link_setting.link_rate_set = 0;
current_link_setting = initial_link_setting;
/* search for the minimum link setting that:
* 1. is supported according to the link training result
* 2. could support the b/w requested by the timing
*/
while (current_link_setting.link_rate <=
link->verified_link_cap.link_rate) {
link_bw = dc_link_bandwidth_kbps(
link,
&current_link_setting);
if (req_bw <= link_bw) {
*link_setting = current_link_setting;
return true;
}
if (current_link_setting.lane_count <
link->verified_link_cap.lane_count) {
current_link_setting.lane_count =
increase_lane_count(
current_link_setting.lane_count);
} else {
if (current_link_setting.link_rate_set < link->dpcd_caps.edp_supported_link_rates_count) {
current_link_setting.link_rate_set++;
current_link_setting.link_rate =
link->dpcd_caps.edp_supported_link_rates[current_link_setting.link_rate_set];
current_link_setting.lane_count =
initial_link_setting.lane_count;
} else
break;
}
}
return false;
}
static bool decide_mst_link_settings(const struct dc_link *link, struct dc_link_settings *link_setting)
{
*link_setting = link->verified_link_cap;
return true;
}
void decide_link_settings(struct dc_stream_state *stream,
struct dc_link_settings *link_setting)
{
struct dc_link *link;
uint32_t req_bw;
req_bw = dc_bandwidth_in_kbps_from_timing(&stream->timing);
link = stream->link;
/* if preferred is specified through AMDDP, use it, if it's enough
* to drive the mode
*/
if (link->preferred_link_setting.lane_count !=
LANE_COUNT_UNKNOWN &&
link->preferred_link_setting.link_rate !=
LINK_RATE_UNKNOWN) {
*link_setting = link->preferred_link_setting;
return;
}
/* MST doesn't perform link training for now
* TODO: add MST specific link training routine
*/
if (stream->signal == SIGNAL_TYPE_DISPLAY_PORT_MST) {
if (decide_mst_link_settings(link, link_setting))
return;
} else if (link->connector_signal == SIGNAL_TYPE_EDP) {
if (decide_edp_link_settings(link, link_setting, req_bw))
return;
} else if (decide_dp_link_settings(link, link_setting, req_bw))
return;
BREAK_TO_DEBUGGER();
ASSERT(link->verified_link_cap.lane_count != LANE_COUNT_UNKNOWN);
*link_setting = link->verified_link_cap;
}
/*************************Short Pulse IRQ***************************/
static bool allow_hpd_rx_irq(const struct dc_link *link)
{
/*
* Don't handle RX IRQ unless one of following is met:
* 1) The link is established (cur_link_settings != unknown)
* 2) We know we're dealing with a branch device, SST or MST
*/
if ((link->cur_link_settings.lane_count != LANE_COUNT_UNKNOWN) ||
is_dp_branch_device(link))
return true;
return false;
}
static bool handle_hpd_irq_psr_sink(struct dc_link *link)
{
union dpcd_psr_configuration psr_configuration;
if (!link->psr_settings.psr_feature_enabled)
return false;
dm_helpers_dp_read_dpcd(
link->ctx,
link,
368,/*DpcdAddress_PSR_Enable_Cfg*/
&psr_configuration.raw,
sizeof(psr_configuration.raw));
if (psr_configuration.bits.ENABLE) {
unsigned char dpcdbuf[3] = {0};
union psr_error_status psr_error_status;
union psr_sink_psr_status psr_sink_psr_status;
dm_helpers_dp_read_dpcd(
link->ctx,
link,
0x2006, /*DpcdAddress_PSR_Error_Status*/
(unsigned char *) dpcdbuf,
sizeof(dpcdbuf));
/*DPCD 2006h ERROR STATUS*/
psr_error_status.raw = dpcdbuf[0];
/*DPCD 2008h SINK PANEL SELF REFRESH STATUS*/
psr_sink_psr_status.raw = dpcdbuf[2];
if (psr_error_status.bits.LINK_CRC_ERROR ||
psr_error_status.bits.RFB_STORAGE_ERROR ||
psr_error_status.bits.VSC_SDP_ERROR) {
/* Acknowledge and clear error bits */
dm_helpers_dp_write_dpcd(
link->ctx,
link,
8198,/*DpcdAddress_PSR_Error_Status*/
&psr_error_status.raw,
sizeof(psr_error_status.raw));
/* PSR error, disable and re-enable PSR */
dc_link_set_psr_allow_active(link, false, true, false);
dc_link_set_psr_allow_active(link, true, true, false);
return true;
} else if (psr_sink_psr_status.bits.SINK_SELF_REFRESH_STATUS ==
PSR_SINK_STATE_ACTIVE_DISPLAY_FROM_SINK_RFB){
/* No error is detect, PSR is active.
* We should return with IRQ_HPD handled without
* checking for loss of sync since PSR would have
* powered down main link.
*/
return true;
}
}
return false;
}
static void dp_test_send_link_training(struct dc_link *link)
{
struct dc_link_settings link_settings = {0};
core_link_read_dpcd(
link,
DP_TEST_LANE_COUNT,
(unsigned char *)(&link_settings.lane_count),
1);
core_link_read_dpcd(
link,
DP_TEST_LINK_RATE,
(unsigned char *)(&link_settings.link_rate),
1);
/* Set preferred link settings */
link->verified_link_cap.lane_count = link_settings.lane_count;
link->verified_link_cap.link_rate = link_settings.link_rate;
dp_retrain_link_dp_test(link, &link_settings, false);
}
/* TODO Raven hbr2 compliance eye output is unstable
* (toggling on and off) with debugger break
* This caueses intermittent PHY automation failure
* Need to look into the root cause */
static void dp_test_send_phy_test_pattern(struct dc_link *link)
{
union phy_test_pattern dpcd_test_pattern;
union lane_adjust dpcd_lane_adjustment[2];
unsigned char dpcd_post_cursor_2_adjustment = 0;
unsigned char test_pattern_buffer[
(DP_TEST_80BIT_CUSTOM_PATTERN_79_72 -
DP_TEST_80BIT_CUSTOM_PATTERN_7_0)+1] = {0};
unsigned int test_pattern_size = 0;
enum dp_test_pattern test_pattern;
struct dc_link_training_settings link_settings;
union lane_adjust dpcd_lane_adjust;
unsigned int lane;
struct link_training_settings link_training_settings;
int i = 0;
dpcd_test_pattern.raw = 0;
memset(dpcd_lane_adjustment, 0, sizeof(dpcd_lane_adjustment));
memset(&link_settings, 0, sizeof(link_settings));
/* get phy test pattern and pattern parameters from DP receiver */
core_link_read_dpcd(
link,
DP_PHY_TEST_PATTERN,
&dpcd_test_pattern.raw,
sizeof(dpcd_test_pattern));
core_link_read_dpcd(
link,
DP_ADJUST_REQUEST_LANE0_1,
&dpcd_lane_adjustment[0].raw,
sizeof(dpcd_lane_adjustment));
/*get post cursor 2 parameters
* For DP 1.1a or eariler, this DPCD register's value is 0
* For DP 1.2 or later:
* Bits 1:0 = POST_CURSOR2_LANE0; Bits 3:2 = POST_CURSOR2_LANE1
* Bits 5:4 = POST_CURSOR2_LANE2; Bits 7:6 = POST_CURSOR2_LANE3
*/